Role of RNA methylation in the regulation of pancreatic cancer stem cells (Review)
- Authors:
- Yoshiko Tsuji
- Tomoaki Hara
- Sikun Meng
- Hiromichi Sato
- Yasuko Arao
- Ken Ofusa
- Hideshi Ishii
-
Affiliations: Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan - Published online on: June 20, 2023 https://doi.org/10.3892/ol.2023.13922
- Article Number: 336
-
Copyright: © Tsuji et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
McGuigan A, Kelly P, Turkington RC, Jones C, Coleman HG and McCain RS: Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J Gastroenterol. 24:4846–4861. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C and Yang H: Chemoresistance in pancreatic cancer. Int J Mol Sci. 20:45042019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Sanagapalli S and Stoita A: Challenges in diagnosis of pancreatic cancer. World J Gastroenterol. 24:2047–2060. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ansari D, Tingstedt B, Andersson B, Holmquist F, Sturesson C, Williamsson C, Sasor A, Borg D, Bauden M and Andersson R: Pancreatic cancer: Yesterday, today and tomorrow. Future Oncol. 12:1929–1946. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fialkow PJ, Singer JW, Raskind WH, Adamson JW, Jacobson RJ, Bernstein ID, Dow LW, Najfeld V and Veith R: Clonal development, stem-cell differentiation, and clinical remissions in acute nonlymphocytic leukemia. N Engl J Med. 317:468–473. 1987. View Article : Google Scholar : PubMed/NCBI | |
McCulloch EA, Howatson AF, Buick RN, Minden MD and Izaguirre CA: Acute myeloblastic leukemia considered as a clonal hemopathy. Blood Cells. 5:261–282. 1979.PubMed/NCBI | |
Vogelstein B, Fearon ER, Hamilton SR and Feinberg AP: Use of restriction fragment length polymorphisms to determine the clonal origin of human tumors. Science. 227:642–645. 1985. View Article : Google Scholar : PubMed/NCBI | |
Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, Kennedy JA, Schimmer AD, Schuh AC, Yee KW, et al: Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 506:328–333. 2014. View Article : Google Scholar : PubMed/NCBI | |
Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI | |
O'Brien CA, Pollett A, Gallinger S and Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 445:106–110. 2007. View Article : Google Scholar : PubMed/NCBI | |
Haraguchi N, Ohkuma M, Sakashita H, Matsuzaki S, Tanaka F, Mimori K, Kamohara Y, Inoue H and Mori M: CD133+CD44+ population efficiently enriches colon cancer initiating cells. Ann Surg Oncol. 15:2927–2933. 2008. View Article : Google Scholar : PubMed/NCBI | |
Haraguchi N, Ishii H, Mimori K, Tanaka F, Ohkuma M, Kim HM, Akita H, Takiuchi D, Hatano H, Nagano H, et al: CD13 is a therapeutic target in human liver cancer stem cells. J Clin Invest. 120:3326–3339. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ishiwata T, Matsuda Y, Yoshimura H, Sasaki N, Ishiwata S, Ishikawa N, Takubo K, Arai T and Aida J: Pancreatic cancer stem cells: Features and detection methods. Pathol Oncol Res. 24:797–805. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li H, Wang C, Lan L, Yan L, Li W, Evans I, Ruiz EJ, Su Q, Zhao G, Wu W, et al: METTL3 promotes oxaliplatin resistance of gastric cancer CD133+ stem cells by promoting PARP1 mRNA stability. Cell Mol Life Sci. 79:1352022. View Article : Google Scholar : PubMed/NCBI | |
Li B, Jiang J, Assaraf YG, Xiao H, Chen ZS and Huang C: Surmounting cancer drug resistance: New insights from the perspective of N6-methyladenosine RNA modification. Drug Resist Updat. 53:1007202020. View Article : Google Scholar : PubMed/NCBI | |
Gao Q, Zheng J, Ni Z, Sun P, Yang C, Cheng M, Wu M, Zhang X, Yuan L, Zhang Y and Li Y: The m6A methylation-regulated AFF4 promotes self-renewal of bladder cancer stem cells. Stem Cells Int. 2020:88492182020. View Article : Google Scholar : PubMed/NCBI | |
Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, Leonhardt H, Heyn H, Hellmann I and Enard W: Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 65:631–643.e4. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lei Y, Tang R, Xu J, Wang W, Zhang B, Liu J, Yu X and Shi S: Applications of single-cell sequencing in cancer research: Progress and perspectives. J Hematol Oncol. 14:912021. View Article : Google Scholar : PubMed/NCBI | |
Ren X, Zhou C, Lu Y, Ma F, Fan Y and Wang C: Single-cell RNA-seq reveals invasive trajectory and determines cancer stem cell-related prognostic genes in pancreatic cancer. Bioengineered. 12:5056–5068. 2021. View Article : Google Scholar : PubMed/NCBI | |
Karmakar S, Rauth S, Nallasamy P, Perumal N, Nimmakayala RK, Leon F, Gupta R, Barkeer S, Venkata RC, Raman V, et al: RNA polymerase II-associated factor 1 regulates stem cell features of pancreatic cancer cells, independently of the PAF1 complex, via interactions with PHF5A and DDX3. Gastroenterology. 159:1898–1915.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wood A, Schneider J, Dover J, Johnston M and Shilatifard A: The Paf1 complex is essential for histone monoubiquitination by the Rad6-Bre1 complex, which signals for histone methylation by COMPASS and Dot1p. J Biol Chem. 278:34739–34742. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chaudhary K, Deb S, Moniaux N, Ponnusamy MP and Batra SK: Human RNA polymerase II-associated factor complex: Dysregulation in cancer. Oncogene. 26:7499–7507. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Wang Z, Yan Y, Ji L, He J, Xuan B, Shen C, Ma Y, Jiang S, Ma D, et al: Enterotoxigenic bacteroidesfragilis promotes intestinal inflammation and malignancy by inhibiting exosome-packaged miR-149-3p. Gastroenterology. 161:1552–1566.e12. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sato H, Sasaki K, Hara T, Kobayashi S, Doki Y, Eguchi H, Satoh T and Ishii H: Targeting the regulation of aberrant protein production pathway in gastrointestinal cancer treatment. Front Oncol. 12:10183332022. View Article : Google Scholar : PubMed/NCBI | |
Konno M, Taniguchi M and Ishii H: Significant epitranscriptomes in heterogeneous cancer. Cancer Sci. 110:2318–2327. 2019. View Article : Google Scholar : PubMed/NCBI | |
Desrosiers R, Friderici K and Rottman F: Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Porc Natl Acad Sci USA. 71:3971–3975. 1974. View Article : Google Scholar : PubMed/NCBI | |
Perry RP and Kelley DE: Existence of methylated messenger RNA in mouse L cells. Cell. 1:37–42. 1974. View Article : Google Scholar | |
Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, et al: Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206. 2012. View Article : Google Scholar : PubMed/NCBI | |
Meyer KD, Saletore Y, Zumbo P, Elemento O, Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation reveals enrichment in 3´ UTRs and near stop codons. Cell. 149:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meyer KD and Jaffrey SR: Rethinking m6A readers, writers, and erasers. Annu Rev Cell Dev Biol. 33:319–342. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhang S, Li H and Xu Y, Wu Q, Shen J, Li T and Xu Y: Quantification of m6A RNA methylation modulators pattern was a potential biomarker for prognosis and associated with tumor immune microenvironment of pancreatic adenocarcinoma. BMC Cancer. 21:8762021. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Zhang Z, Yuan M, Zhao Y, Zhou Y, Pei H and Bai L: M6A regulatory genes play an important role in the prognosis, progression and immune microenvironment of pancreatic adenocarcinoma. Cancer Invest. 39:39–54. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li F, He C, Yao H, Zhao Y, Ye X, Zhou S, Zou J, Li Y, Li J, Chen S, et al: Glutamate from nerve cells promotes perineural invasion in pancreatic cancer by regulating tumor glycolysis through HK2 mRNA-m6A modification. Pharmacol Res. 187:1065552023. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Liu B, Nie Z, Duan L, Xiong Q, Jin Z, Yang C and Chen Y: The role of m6A modification in the biological functions and diseases. Signal Transduct Target Ther. 6:742021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wang F, Liu Y, Wang H and Ni B: N6-methyladenosine (m6A) in pancreatic cancer: Regulatory mechanisms and future direction. Int J Biol Sci. 17:2323–2335. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guo X, Li K, Jiang W, Hu Y, Xiao W, Huang Y, Feng Y, Pan Q and Wan R: RNA demethylase ALKBH5 prevents pancreatic cancer progression by posttranscriptional activation of PER1 in an m6A-YTHDF2-dependent manner. Mol Cancer. 19:912020. View Article : Google Scholar : PubMed/NCBI | |
Ma Z and Ji J: N6-methyladenosine (m6A) RNA modification in cancer stem cells. Stem Cells. 38:1511–1519. 2020. View Article : Google Scholar | |
Shen C, Sheng Y, Zhu AC, Robinson S, Jiang X, Dong L, Chen H, Su R, Yin Z, Li W, et al: RNA demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell. 27:64–80.e9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Paris J, Morgan M, Campos J, Spencer GJ, Shmakova A, Ivanova I, Mapperley C, Lawson H, Wotherspoon DA, Sepulveda C, et al: Targeting the RNA m6A reader YTHDF2 selectively compromises cancer stem cells in acute myeloid leukemia. Cell Stem Cell. 25:137–148.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Samanta D, Lu H, Bullen JW, Zhang H, Chen I, He X and Semenza GL: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA. 113:E2047–E2056. 2016.PubMed/NCBI | |
Zhu P, He F, Hou Y, Tu G, Li Q, Jin T, Zeng H, Qin Y, Wan X, Qiao Y, et al: A novel hypoxic long noncoding RNA KB-1980E6.3 maintains breast cancer stem cell stemness via interacting with IGF2BP1 to facilitate c-Myc mRNA stability. Oncogene. 40:1609–1627. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dixit D, Prager BC, Gimple RC, Poh HX, Wang Y, Wu Q, Qiu Z, Kidwell RL, Kim LJY, Xie Q, et al: The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells. Cancer Discov. 11:480–499. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Zhao BS, Zhou A, Lin K, Zheng S, Lu Z, Chen Y, Sulman EP, Xie K, Bögler O, et al: m6A Demethylase ALKBH5 maintains tumorigenicity of glioblastoma Stem-like Cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 31:591–606.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, et al: m6A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep. 18:2622–2634. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Chen C, Ji X, Liu J, Zhou Q, Wang G, Yuan W, Kan Q and Sun Z: The interplay between m6A RNA methylation and noncoding RNA in cancer. J Hematol Oncol. 12:1212019. View Article : Google Scholar : PubMed/NCBI | |
Dai D, Wang H, Zhu L, Jin H and Wang X: N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis. 9:1242018. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Cao J, Zhou Z, Lu Y, Li Q, Jin Y, Chen G, Wang W, Ge W, Chen X, et al: N6-methyladenosine modification-mediated mRNA metabolism is essential for human pancreatic lineage specification and islet organogenesis. Nat Commun. 13:41482022. View Article : Google Scholar : PubMed/NCBI | |
Garg R, Melstrom L, Chen J, He C and Goel A: Targeting FTO suppresses pancreatic carcinogenesis via regulating stem cell maintenance and EMT pathway. Cancers (Basel). 14:59192022. View Article : Google Scholar : PubMed/NCBI | |
Chijimatsu R, Kobayashi S, Takeda Y, Kitakaze M, Tatekawa S, Arao Y, Nakayama M, Tachibana N, Saito T, Ennishi D, et al: Establishment of a reference single-cell RNA sequencing dataset for human pancreatic adenocarcinoma. iScience. 25:1046592022. View Article : Google Scholar : PubMed/NCBI | |
Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K and Mori M: Cancer stem cells and chemoradiation resistance. Cancer Science. 99:1871–1877. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mehdi A and Rabbani SA: Role of methylation in pro- and anti-cancer immunity. Cancers (Basel). 13:5452021. View Article : Google Scholar : PubMed/NCBI | |
Tatekawa S, Ofusa K, Chijimatsu R, Vecchione A, Tamari K, Ogawa K and Ishii H: Methylosystem for cancer sieging strategy. Cancers (Basel). 13:50882021. View Article : Google Scholar : PubMed/NCBI | |
Monné M, Marobbio CMT, Agrimi G, Palmieri L and Palmieri F: Mitochondrial transport and metabolism of the major methyl donor and versatile cofactor S-adenosylmethionine, and related diseases: A review. IUBMB Life. 74:573–591. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu X and Zhang Y: TET-mediated active DNA demethylation: Mechanism, function and beyond. Nat Rev Genet. 18:517–534. 2017. View Article : Google Scholar : PubMed/NCBI | |
He L, Li H, Wu A, Peng Y, Shu G and Yin G: Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 18:1762019. View Article : Google Scholar : PubMed/NCBI | |
Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S and Liu T: The critical role of RNA m6A methylation in cancer. Cancer Res. 79:1285–1292. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ryall JG, Cliff T, Dalton S and Sartorelli V: Metabolic reprogramming of stem cell epigenetics. Cell Stem Cell. 17:651–662. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nuñez JK, Chen J, Pommier GC, Cogan JZ, Replogle JM, Adriaens C, Ramadoss GN, Shi Q, Hung KL, Samelson AJ, et al: Genome-wide programmable transcriptional memory by CRISPR-based epigenome editing. Cell. 184:2503–2519.e17. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, Pilka ES, Aspris D, Leggate D, Hendrick AG, et al: Small molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 593:597–601. 2021. View Article : Google Scholar : PubMed/NCBI | |
Huff S, Tiwari SK, Gonzalez GM, Wang Y and Rana TM: m6A-RNA demethylase FTO inhibitors impair self-renewal in glioblastoma stem cells. ACS Chem Biol. 16:324–333. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang JN, Wang F, Ke J, Li Z, Xu CH, Yang Q, Chen X, He XY, He Y, Suo XG, et al: Inhibition of METTL3 attenuates renal injury and inflammation by alleviating TAB3 m6A modifications via IGF2BP2-dependent mechanisms. Sci Transl Med. 14:eabk27092022. View Article : Google Scholar : PubMed/NCBI | |
Huang B, Liu C, Wu Q, Zhang J, Min Q, Sheng T, Wang X and Zou Y: Long non-coding RNA NEAT1 facilitates pancreatic cancer progression through negative modulation of miR-506-3p. Biochem Biophys Res Commun. 482:828–834. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gupta VK and Banerjee S: Isolation of lipid raft proteins from CD133+ cancer stem cells. Methods Mol Biol. 1609:25–31. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF and Simeone DM: Identification of pancreatic cancer stem cells. Cancer Res. 67:1030–1037. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhou T, Liu J, Xie Y, Yuan S, Guo Y, Bai W, Zhao K, Jiang W, Wang H, Wang H, et al: ESE3/EHF, a promising target of rosiglitazone, suppresses pancreatic cancer stemness by downregulating CXCR4. Gut. 71:357–371. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hamada S, Satoh K, Hirota M, Kanno A, Umino J, Ito H, Masamune A, Kikuta K, Kume K and Shimosegawa T: The homeobox gene MSX2 determines chemosensitivity of pancreatic cancer cells via the regulation of transporter gene ABCG2. J Cell Physiol. 227:729–738. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ling X, Wu W, Fan C, Xu C, Liao J, Rich LJ, Huang RY, Repasky EA, Wang X and Li F: An ABCG2 non-substrate anticancer agent FL118 targets drug-resistant cancer stem-like cells and overcomes treatment resistance of human pancreatic cancer. J Exp Clin Cancer Res. 37:2402018. View Article : Google Scholar : PubMed/NCBI | |
Li C, Wu JJ, Hynes M, Dosch J, Sarkar B, Welling TH, Pasca di Magliano M and Simeone DM: c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology. 141:2218–2227.e5. 2011. View Article : Google Scholar : PubMed/NCBI | |
Aliebrahimi S, Kouhsari SM, Arab SS, Shadboorestan A and Ostad SN: Phytochemicals, withaferin A and carnosol, overcome pancreatic cancer stem cells as c-Met inhibitors. Biomed Pharmacother. 106:1527–1536. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nimmakayala RK, Leon F, Rachagani S, Rauth S, Nallasamy P, Marimuthu S, Shailendra GK, Chhonker YS, Chugh S, Chirravuri R, et al: Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma. Oncogene. 40:215–231. 2021. View Article : Google Scholar : PubMed/NCBI | |
Matsuda Y, Tanaka M, Sawabe M, Mori S, Muramatsu M, Mieno MN, Ishiwata T and Arai T: The stem cell-specific intermediate filament nestin missense variation p.A1199P is associated with pancreatic cancer. Oncol Lett. 17:4647–4654. 2019.PubMed/NCBI | |
Xia T, Wu X, Cao M, Zhang P, Shi G, Zhang J, Lu Z, Wu P, Cai B, Miao Y and Jiang K: The RNA m6A methyltransferase METTL3 promotes pancreatic cancer cell proliferation and invasion. Pathol Res Pract. 215:1526662019. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Bai R, Li M, Ye H, Wu C, Wang C, Li S, Tan L, Mai D, Li G, et al: Excessive miR-25-3p maturation via N6-methyladenosine stimulated by cigarette smoke promotes pancreatic cancer progression. Nat Commun. 10:18582019. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Gao G, Xia WW and Wang JB: METTL3 promotes the growth and metastasis of pancreatic cancer by regulating the m6A modification and stability of E2F5. Cell Signal. 99:1104402022. View Article : Google Scholar : PubMed/NCBI | |
Guo Z, Zhang X, Lin C, Huang Y, Zhong Y, Guo H, Zheng Z and Weng S: METTL3-IGF2BP3-axis mediates the proliferation and migration of pancreatic cancer by regulating spermine synthase m6A modification. Front Oncol. 12:9622042022. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Huang H, Zhu Y, Xu B, Chen J, Liu Y, Zheng X and Chen L: Increased expression of METTL3 in pancreatic cancer tissues associates with poor survival of the patients. World J Surg Oncol. 20:2832022. View Article : Google Scholar : PubMed/NCBI | |
Song Z, Wang X, Chen F, Chen Q, Liu W, Yang X, Zhu X, Liu X and Wang P: LncRNA MALAT1 regulates METTL3-mediated PD-L1 expression and immune infiltrates in pancreatic cancer. Front Oncol. 12:10042122022. View Article : Google Scholar : PubMed/NCBI | |
Taketo K, Konno M, Asai A, Koseki J, Toratani M, Satoh T, Doki Y, Mori M, Ishii H and Ogawa K: The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int J Oncol. 52:621–629. 2018.PubMed/NCBI | |
Jiang Z, Song X, Wei Y, Li Y, Kong D and Sun J: N(6)-methyladenosine-mediated miR-380-3p maturation and upregulation promotes cancer aggressiveness in pancreatic cancer. Bioengineered. 13:14460–14471. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen JQ, Tao YP, Hong YG, Li HF, Huang ZP, Xu XF, Zheng H and Hu LK: M6A-mediated up-regulation of LncRNA LIFR-AS1 enhances the progression of pancreatic cancer via miRNA-150-5p/VEGFA/Akt signaling. Cell Cycle. 20:2507–2518. 2021. View Article : Google Scholar : PubMed/NCBI | |
He Y, Liu Y, Wu D, Chen L, Luo Z, Shi X, Li K, Hu H, Qu G, Zhao Q and Lian C: Linc-UROD stabilizes ENO1 and PKM to strengthen glycolysis, proliferation and migration of pancreatic cancer cells. Transl Oncol. 27:1015832023. View Article : Google Scholar : PubMed/NCBI | |
Tatekawa S, Tamari K, Chijimatsu R, Konno M, Motooka D, Mitsufuji S, Akita H, Kobayashi S, Murakumo Y, Doki Y, et al: N(6)-methyladenosine methylation-regulated polo-like kinase 1 cell cycle homeostasis as a potential target of radiotherapy in pancreatic adenocarcinoma. Sci Rep. 12:110742022. View Article : Google Scholar : PubMed/NCBI | |
Ye X, Wang LP, Han C, Hu H, Ni CM, Qiao GL, Ouyang L and Ni JS: Increased m6A modification of lncRNA DBH-AS1 suppresses pancreatic cancer growth and gemcitabine resistance via the miR-3163/USP44 axis. Ann Transl Med. 10:3042022. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Zhou S, Zhang C, Jin Y, Xu G, Zhou L, Ding G, Pang T, Jia S and Cao L: ZC3H13-mediated N6-methyladenosine modification of PHF10 is impaired by fisetin which inhibits the DNA damage response in pancreatic cancer. Cancer Lett. 530:16–28. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hou J, Wang Z, Li H, Zhang H and Luo L: Gene signature and identification of clinical trait-related m6 A regulators in pancreatic cancer. Front Genet. 11:5222020. View Article : Google Scholar : PubMed/NCBI | |
Wang W, He Y, Zhai LL, Chen LJ, Yao LC, Wu L, Tang ZG and Ning JZ: m6A RNA demethylase FTO promotes the growth, migration and invasion of pancreatic cancer cells through inhibiting TFPI-2. Epigenetics. 17:1738–1752. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Yang L, Zhang Z, Liu X, Fei Y, Tong WM, Niu Y and Liang Z: RNA m6A demethylase ALKBH5 protects against pancreatic ductal adenocarcinoma via targeting regulators of iron metabolism. Front Cell Dev Biol. 9:7242822021. View Article : Google Scholar : PubMed/NCBI | |
Cui L, Ma R, Cai J, Guo C, Chen Z, Yao L, Wang Y, Fan R, Wang X and Shi Y: RNA modifications: Importance in immune cell biology and related diseases. Signal Transduct Target Ther. 7:3342022. View Article : Google Scholar : PubMed/NCBI | |
Sato H, Hara T, Tatekawa S, Sasaki K, Kobayashi S, Kitagawa T, Doki Y, Eguchi H, Ogawa K, Uchida S and Ishii H: Emerging roles of long noncoding and circular RNAs in pancreatic ductal adenocarcinoma. Front Physiol. 13:10259232022. View Article : Google Scholar : PubMed/NCBI | |
Takeda Y, Chijimatsu R, Vecchione A, Arai T, Kitagawa T, Ofusa K, Yabumoto M, Hirotsu T, Eguchi H, Doki Y and Ishii H: Impact of one-carbon metabolism-driving epitranscriptome as a therapeutic target for gastrointestinal cancer. Int J Mol Sci. 22:72782021. View Article : Google Scholar : PubMed/NCBI | |
Takeda Y, Chijimatsu R, Ofusa K, Kobayashi S, Doki Y, Eguchi H and Ishii H: Cancer metabolism challenges genomic instability and clonal evolution as therapeutic targets. Cancer Sci. 113:1097–1104. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zagorac S, Garcia-Bermejo L and Sainz B Jr: The epigenetic landscape of pancreatic cancer stem cells. Epigenomes. 2:102018. View Article : Google Scholar | |
Liu Y, Tang G and Li J: Long non-coding RNA NEAT1 participates in ventilator-induced lung injury by regulating miR-20b expression. Mol Med Rep. 25:662022. View Article : Google Scholar : PubMed/NCBI | |
Xia L, Li F, Qiu J, Feng Z, Xu Z, Chen Z and Sun J: Oncogenic miR-20b-5p contributes to malignant behaviors of breast cancer stem cells by bidirectionally regulating CCND1 and E2F1. BMC Cancer. 20:9492020. View Article : Google Scholar : PubMed/NCBI | |
Kroeze LI, van der Reijden BA and Jansen JH: 5-Hydroxymethylcytosine: An epigenetic mark frequently deregulated in cancer. Biochim Biophys Acta. 1855:144–154. 2015.PubMed/NCBI |