1
|
Houvras YL: Completing the Arc: Targeted
inhibition of RET in medullary thyroid cancer. J Clin Oncol.
30:200–202. 2012. View Article : Google Scholar : PubMed/NCBI
|
2
|
Santoro M, Melillo RM and Fusco A: RET/PTC
activation in papillary thyroid carcinoma: European journal of
endocrinology prize lecture. Eur J Endocrinol. 155:645–653. 2006.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Kato S, Subbiah V, Marchlik E, Elkin SK,
Carter JL and Kurzrock R: RET aberrations in diverse cancers:
Next-Generation sequencing of 4,871 patients. Clin Cancer Res.
23:1988–1997. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Li W, Guo L, Liu Y, Dong L, Yang L, Chen
L, Liu K, Shao Y and Ying J: Potential unreliability of uncommon
ALK, ROS1, and RET genomic breakpoints in predicting the efficacy
of targeted therapy in NSCLC. J Thorac Oncol. 16:404–418. 2021.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang K, Chen H, Wang Y, Yang L, Zhou C,
Yin W, Wang G, Mao X, Xiang J, Li B, et al: Clinical
characteristics and molecular patterns of RET-Rearranged lung
cancer in Chinese patients. Oncol Res. 27:575–582. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gandhi M, Dillon LW, Pramanik S, Nikiforov
YE and Wang YH: DNA breaks at fragile sites generate oncogenic
RET/PTC rearrangements in human thyroid cells. Oncogene.
29:2272–2280. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Li AY, McCusker MG, Russo A, Scilla KA,
Gittens A, Arensmeyer K, Mehra R, Adamo V and Rolfo C: RET fusions
in solid tumors. Cancer Treat Rev. 81:1019112019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Takeuchi K, Soda M, Togashi Y, Suzuki R,
Sakata S, Hatano S, Asaka R, Hamanaka W, Ninomiya H, Uehara H, et
al: RET, ROS1 and ALK fusions in lung cancer. Nat Med. 18:378–381.
2012. View
Article : Google Scholar : PubMed/NCBI
|
9
|
Kohno T, Ichikawa H, Totoki Y, Yasuda K,
Hiramoto M, Nammo T, Sakamoto H, Tsuta K, Furuta K, Shimada Y, et
al: KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 18:375–377.
2012. View
Article : Google Scholar : PubMed/NCBI
|
10
|
Chen P, Liu Y, Wen Y and Zhou C: Non-small
cell lung cancer in China. Cancer Commun (Lond). 42:937–970. 2022.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Qiu Z, Ye B, Wang K, Zhou P, Zhao S, Li W
and Tian P: Unique genetic characteristics and clinical prognosis
of female patients with lung cancer harboring RET fusion gene. Sci
Rep. 10:103872020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pikor LA, Ramnarine VR, Lam S and Lam WL:
Genetic alterations defining NSCLC subtypes and their therapeutic
implications. Lung Cancer. 82:179–189. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shim HS, Choi YL, Kim L, Chang S, Kim WS,
Roh MS, Kim TJ, Ha SY, Chung JH, Jang SJ, et al: Molecular testing
of lung cancers. J Pathol Transl Med. 51:242–254. 2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chan BA and Hughes BG: Targeted therapy
for non-small cell lung cancer: Current standards and the promise
of the future. Transl Lung Cancer Res. 4:36–54. 2015.PubMed/NCBI
|
15
|
Lim C, Tsao MS, Le LW, Shepherd FA, Feld
R, Burkes RL, Liu G, Kamel-Reid S, Hwang D, Tanguay J, et al:
Biomarker testing and time to treatment decision in patients with
advanced non small-cell lung cancer. Ann Oncol. 26:1415–1421. 2015.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Janse van Rensburg HJ, Spiliopoulou P and
Siu LL: Circulating biomarkers for therapeutic monitoring of
anti-cancer agents. Oncologist. 27:352–362. 2022. View Article : Google Scholar : PubMed/NCBI
|
17
|
Duffy MJ and Crown J: Circulating Tumor
DNA as a biomarker for monitoring patients with solid cancers:
Comparison with standard protein biomarkers. Clin Chem.
68:1381–1390. 2022. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kotani D, Oki E, Nakamura Y, Yukami H,
Mishima S, Bando H, Shirasu H, Yamazaki K, Watanabe J, Kotaka M, et
al: Molecular residual disease and efficacy of adjuvant
chemotherapy in patients with colorectal cancer. Nat Med.
29:127–134. 2023. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhao H, Chen KZ, Hui BG, Zhang K, Yang F
and Wang J: Role of circulating tumor DNA in the management of
early-stage lung cancer. Thorac Cancer. 9:509–515. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lim W, Ridge CA, Nicholson AG and
Mirsadraee S: The 8th lung cancer TNM classification and clinical
staging system: Review of the changes and clinical implications.
Quant Imaging Med Surg. 8:709–718. 2018. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kaba H, Fukuda H, Yamamoto S and Ohashi Y:
Reliability at the National Cancer Institute-Common Toxicity
Criteria version 2.0. Gan To Kagaku Ryoho. 31:1187–1192. 2004.(In
Japanese). PubMed/NCBI
|
22
|
Brodovicz KG, McNaughton K, Uemura N,
Meininger G, Girman CJ and Yale SH: Reliability and feasibility of
methods to quantitatively assess peripheral edema. Clin Med Res.
7:21–31. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Azam F, Latif MF, Farooq A, Tirmazy SH,
AlShahrani S, Bashir S and Bukhari N: Performance status assessment
by using ECOG (Eastern Cooperative Oncology Group) score for cancer
patients by oncology healthcare professionals. Case Rep Oncol.
12:728–736. 2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Kelly CM and Shahrokni A: Moving beyond
Karnofsky and ECOG performance status assessments with new
technologies. J Oncol. 2016:61865432016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Eisenhauer EA, Therasse P, Bogaerts J,
Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S,
Mooney M, et al: New response evaluation criteria in solid tumours:
Revised RECIST guideline (version 1.1). Eur J Cancer. 45:228–247.
2009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chaudhuri AA, Chabon JJ, Lovejoy AF,
Newman AM, Stehr H, Azad TD, Khodadoust MS, Esfahani MS, Liu CL,
Zhou L, et al: Early detection of molecular residual disease in
localized lung cancer by circulating tumor DNA profiling. Cancer
Discov. 7:1394–1403. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Arrieta O, Villarreal-Garza C,
Martínez-Barrera L, Morales M, Dorantes-Gallareta Y, Peña-Curiel O,
Contreras-Reyes S, Macedo-Pérez EO and Alatorre-Alexander J:
Usefulness of serum carcinoembryonic antigen (CEA) in evaluating
response to chemotherapy in patients with advanced non small-cell
lung cancer: A prospective cohort study. BMC Cancer. 13:2542013.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Kuo YS, Zheng MY, Huang MF, Miao CC, Yang
LH, Huang TW and Chou YT: Association of divergent carcinoembryonic
antigen patterns and lung cancer progression. Sci Rep. 10:20662020.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Scagliotti GV, Parikh P, von Pawel J,
Biesma B, Vansteenkiste J, Manegold C, Serwatowski P, Gatzemeier U,
Digumarti R, Zukin M, et al: Phase III study comparing cisplatin
plus gemcitabine with cisplatin plus pemetrexed in
chemotherapy-naive patients with advanced-stage non-small-cell lung
cancer. J Clin Oncol. 26:3543–3551. 2008. View Article : Google Scholar : PubMed/NCBI
|
30
|
Shen T, Pu X, Wang L, Yu Z, Li J, Zhang Y,
Liang X, Chen H, Xu C, Song Z and Wang W: Association between RET
fusions and efficacy of pemetrexed-based chemotherapy for patients
with advanced NSCLC in China: A multicenter retrospective study.
Clin Lung Cancer. 21:e349–e354. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gautschi O, Milia J, Filleron T, Wolf J,
Carbone DP, Owen D, Camidge R, Narayanan V, Doebele RC, Besse B, et
al: Targeting RET in patients with RET-Rearranged lung cancers:
Results from the global, multicenter RET registry. J Clin Oncol.
35:1403–1410. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Drilon A, Bergagnini I, Delasos L, Sabari
J, Woo KM, Plodkowski A, Wang L, Hellmann MD, Joubert P, Sima CS,
et al: Clinical outcomes with pemetrexed-based systemic therapies
in RET-rearranged lung cancers. Ann Oncol. 27:1286–1291. 2016.
View Article : Google Scholar : PubMed/NCBI
|
33
|
König D, Savic Prince S and Rothschild SI:
Targeted therapy in advanced and metastatic non-small cell lung
cancer. An update on treatment of the most important actionable
oncogenic driver alterations. Cancers (Basel). 13:8042021.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhou Q, Wu Y, Chang J, Wang H, Fan Y, Wang
K, Wu G, Nian W, Sun Y, Sun M, et al: Efficacy and safety of
pralsetinib in Chinese patients with advanced RET fusion+ non-small
cell lung cancer after platinum-based chemotherapy. J Thorac Oncol.
16:216–227. S1002021. View Article : Google Scholar
|
35
|
Subbiah V, Cassier PA, Siena S, Garralda
E, Paz-Ares L, Garrido P, Nadal E, Vuky J, Lopes G, Kalemkerian GP,
et al: Pan-cancer efficacy of pralsetinib in patients with RET
fusion-positive solid tumors from the phase 1/2 ARROW trial. Nat
Med. 28:1640–1645. 2022. View Article : Google Scholar : PubMed/NCBI
|
36
|
Supplee JG, Milan MSD, Lim LP, Potts KT,
Sholl LM, Oxnard GR and Paweletz CP: Sensitivity of next-generation
sequencing assays detecting oncogenic fusions in plasma cell-free
DNA. Lung Cancer. 134:96–99. 2019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Rolfo C, Mack PC, Scagliotti GV, Baas P,
Barlesi F, Bivona TG, Herbst RS, Mok TS, Peled N, Pirker R, et al:
Liquid biopsy for advanced non-small cell lung cancer (NSCLC): A
statement paper from the IASLC. J Thorac Oncol. 13:1248–1268. 2018.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Tsuta K, Kohno T, Yoshida A, Shimada Y,
Asamura H, Furuta K and Kushima R: RET-rearranged non-small-cell
lung carcinoma: A clinicopathological and molecular analysis. Br J
Cancer. 110:1571–1578. 2014. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lin C, Wang S, Xie W, Chang J and Gan Y:
The RET fusion gene and its correlation with demographic and
clinicopathological features of non-small cell lung cancer: A
meta-analysis. Cancer Biol Ther. 16:1019–1028. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Goldberg SB, Narayan A, Kole AJ, Decker
RH, Teysir J, Carriero NJ, Lee A, Nemati R, Nath SK, Mane SM, et
al: Early assessment of lung cancer immunotherapy response via
circulating tumor DNA. Clin Cancer Res. 24:1872–1880. 2018.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Sanz-Garcia E, Zhao E, Bratman SV and Siu
LL: Monitoring and adapting cancer treatment using circulating
tumor DNA kinetics: Current research, opportunities, and
challenges. Sci Adv. 8:eabi86182022. View Article : Google Scholar : PubMed/NCBI
|
42
|
Caswell DR and Swanton C: The role of
tumour heterogeneity and clonal cooperativity in metastasis, immune
evasion and clinical outcome. BMC Med. 15:1332017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Shi X, Huang F, Chen A, Wu Z, Huang Q,
Liang Y, Zhou Q, Mo H, Li X and Zhang J: The impact of chemotherapy
on EGFR mutation status in non-small-cell lung cancer: A
meta-analysis. Open J Gen. 7:117–129. 2017. View Article : Google Scholar
|
44
|
Pich O, Muiños F, Lolkema MP, Steeghs N,
Gonzalez-Perez A and Lopez-Bigas N: The mutational footprints of
cancer therapies. Nat Genet. 51:1732–1740. 2019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Strom SP: Current practices and guidelines
for clinical next-generation sequencing oncology testing. Cancer
Biol Med. 13:3–11. 2016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Hsiehchen D, Espinoza M, Gerber DE and Beg
MS: Clinical and biological determinants of circulating tumor DNA
detection and prognostication using a next-generation sequencing
panel assay. Cancer Biol Ther. 22:455–464. 2021. View Article : Google Scholar : PubMed/NCBI
|
47
|
Parikh AR, Mojtahed A, Schneider JL,
Kanter K, Van Seventer EE, Fetter IJ, Thabet A, Fish MG, Teshome B,
Fosbenner K, et al: Serial ctDNA monitoring to predict response to
systemic therapy in metastatic gastrointestinal cancers. Clin
Cancer Res. 26:1877–1885. 2020. View Article : Google Scholar : PubMed/NCBI
|