1
|
Van Laar C, Van Der Sangen M, Poortmans P,
Nieuwenhuijzen GA, Roukema JA, Roumen RM, Tjan-Heijnen VC and Voogd
AC: Local recurrence following breast-conserving treatment in women
aged 40 years or younger: Trends in risk and the impact on
prognosis in a population-based cohort of 1143 patients. Eur J
Cancer. 49:3093–3101. 2013. View Article : Google Scholar : PubMed/NCBI
|
2
|
van Dongen JA, Voogd AC, Fentiman IS,
Legrand C, Sylvester RJ, Tong D, van der Schueren E, Helle PA, van
Zijl K and Bartelink H: Long-term results of a randomized trial
comparing breast-conserving therapy with mastectomy: European
organization for research and treatment of cancer 10801 trial. J
Natl Cancer Inst. 92:1143–1150. 2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Wapnir IL, Anderson SJ, Mamounas EP, Geyer
CE Jr, Jeong JH, Tan-Chiu E, Fisher B and Wolmark N: Prognosis
after ipsilateral breast tumor recurrence and locoregional
recurrences in five national surgical adjuvant breast and bowel
project node-positive adjuvant breast cancer trials. J Clin Oncol.
24:2028–2037. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Katz A, Strom EA, Buchholz TA, Thames HD,
Smith CD, Jhingran A, Hortobagyi G, Buzdar AU, Theriault R,
Singletary SE and McNeese MD: Locoregional recurrence patterns
after mastectomy and doxorubicin-based chemotherapy: Implications
for postoperative irradiation. J Clin Oncol. 18:2817–2827. 2000.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Koçak B, Durmaz EŞ, Ateş E and Kılıçkesmez
Ö: Radiomics with artificial intelligence: A practical guide for
beginners. Diagn Interv Radiol. 25:485–495. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
van Timmeren JE, Leijenaar RTH, van Elmpt
W, Reymen B, Oberije C, Monshouwer R, Bussink J, Brink C, Hansen O
and Lambin P: Survival prediction of non-small cell lung cancer
patients using radiomics analyses of cone-beam CT images. Radiother
Oncol. 123:363–369. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bulens P, Couwenberg A, Intven M,
Debucquoy A, Vandecaveye V, Van Cutsem E, D'Hoore A, Wolthuis A,
Mukherjee P, Gevaert O and Haustermans K: Predicting the tumor
response to chemoradiotherapy for rectal cancer: Model development
and external validation using MRI radiomics. Radiother Oncol.
142:246–252. 2020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Shen Y, Shamout FE, Oliver JR, Witowski J,
Kannan K, Park J, Wu N, Huddleston C, Wolfson S, Millet A, et al:
Artificial intelligence system reduces false-positive findings in
the interpretation of breast ultrasound exams. Nat Commun.
12:56452021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sannachi L, Gangeh M, Tadayyon H, Gandhi
S, Wright FC, Slodkowska E, Curpen B, Sadeghi-Naini A, Tran W and
Czarnota GJ: Breast cancer treatment response monitoring using
quantitative ultrasound and texture analysis: Comparative analysis
of analytical models. Transl Oncol. 12:1271–1281. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
Jo JH, Chung HW, So Y, Yoo YB, Park KS,
Nam SE, Lee EJ and Noh WC: FDG PET/CT to predict recurrence of
early breast invasive ductal carcinoma. Diagnostics (Basel).
12:6942022. View Article : Google Scholar : PubMed/NCBI
|
11
|
Whitney HM, Drukker K, Edwards A,
Papaioannou J and Giger ML: Effect of biopsy on the MRI radiomics
classification of benign lesions and luminal A cancers. J Med
Imaging (Bellingham). 6:0314082019.PubMed/NCBI
|
12
|
Saha A, Harowicz MR, Grimm LJ, Kim CE,
Ghate SV, Walsh R and Mazurowski MA: A machine learning approach to
radiogenomics of breast cancer: A study of 922 subjects and 529
DCE-MRI features. Br J Cancer. 119:508–516. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Han L, Zhu Y, Liu Z, Yu T, He C, Jiang W,
Kan Y, Dong D, Tian J and Luo Y: Radiomic nomogram for prediction
of axillary lymph node metastasis in breast cancer. Eur Radiol.
29:3820–3829. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liu Z, Li Z, Qu J, Zhang R, Zhou X, Li L,
Sun K, Tang Z, Jiang H, Li H, et al: Radiomics of multiparametric
MRI for pretreatment prediction of pathologic complete response to
neoadjuvant chemotherapy in breast cancer: A multicenter study.
Clin Cancer Res. 25:3538–3547. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Chan HM, van der Velden BHM, Loo CE and
Gilhuijs KGA: Eigentumors for prediction of treatment failure in
patients with early-stage breast cancer using dynamic
contrast-enhanced MRI: A feasibility study. Phys Med Biol.
62:6467–6485. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Harada TL, Uematsu T, Nakashima K,
Kawabata T, Nishimura S, Takahashi K, Tadokoro Y, Hayashi T,
Tsuchiya K, Watanabe J and Sugino T: Evaluation of breast edema
findings at T2-weighted breast MRI is useful for diagnosing occult
inflammatory breast cancer and can predict prognosis after
neoadjuvant chemotherapy. Radiology. 299:53–62. 2021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Cain EH, Saha A, Harowicz MR, Marks JR,
Marcom PK and Mazurowski MA: Multivariate machine learning models
for prediction of pathologic response to neoadjuvant therapy in
breast cancer using MRI features: A study using an independent
validation set. Breast Cancer Res Treat. 173:455–463. 2019.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Symmans WF, Peintinger F, Hatzis C, Rajan
R, Kuerer H, Valero V, Assad L, Poniecka A, Hennessy B, Green M, et
al: Measurement of residual breast cancer burden to predict
survival after neoadjuvant chemotherapy. J Clin Oncol.
25:4414–4422. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Van Griethuysen JJM, Fedorov A, Parmar C,
Hosny A, Aucoin N, Narayan V, Beets-Tan RGH, Fillion-Robin JC,
Pieper S and Aerts HJWL: Computational radiomics system to decode
the radiographic phenotype. Cancer Res. 77:e104–e107. 2017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Haralick RM, Shanmugam K and Dinstein I:
Textural features for image classification. IEEE Trans Syst Man
Cybern. 3:610–621. 1973. View Article : Google Scholar
|
21
|
Galloway MM: Texture analysis using gray
level run lengths. Comput Graph Image process. 4:172–179. 1975.
View Article : Google Scholar
|
22
|
Thibault G, Fertil B, Navarro C, Pereira
S, Cau P, Levy N, Sequeira J and Mari JL: Shape and texture indexes
application to cell nuclei classification. Int J Pattern Recognit
Artif Intell. 27:13570022013. View Article : Google Scholar
|
23
|
Sun C and Wee WG: Neighboring gray level
dependence matrix for texture classification. Comput Vis Graph
Image Process. 23:341–352. 1983. View Article : Google Scholar
|
24
|
Amadasun M and King R: Textural features
corresponding to textural properties. IEEE Trans Syst Man Cybern.
19:1264–1274. 1989. View
Article : Google Scholar
|
25
|
Tibshirani R: Regression shrinkage and
selection via the lasso. J R Stat Soc B (Methodol). 58:267–288.
1996.
|
26
|
Pedregosa F, Varoquaux G, Gramfort A,
Michel V and Thirion B: Scikit-learn: Machine learning in Python. J
Mach Learn Res. 12:2825–2830. 2011.
|
27
|
Wolpert DH: Stacked generalization. Neural
Netw. 5:241–259. 1992. View Article : Google Scholar
|
28
|
Steinwart I and Christmann A: Support
vector machines. Springer Science & Business Media; 2008
|
29
|
Cutler A, Cutler DR and Stevens JR: Random
forests. Ensemble machine learning: Methods and applications.
157–175. 2012.
|
30
|
Kim JH, Ko ES, Lim Y, Lee KS, Han BK, Ko
EY, Hahn SY and Nam SJ: Breast cancer heterogeneity: MR imaging
texture analysis and survival outcomes. Radiology. 282:665–675.
2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Park H, Lim Y, Ko ES, Cho HH, Lee JE, Han
BK, Ko EY, Choi JS and Park KW: Radiomics signature on magnetic
resonance imaging: Association with disease-free survival in
patients with invasive breast cancer. Clin Cancer Res.
24:4705–4714. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Johansen R, Jensen LR, Rydland J, Goa PE,
Kvistad KA, Bathen TF, Axelson DE, Lundgren S and Gribbestad IS:
Predicting survival and early clinical response to primary
chemotherapy for patients with locally advanced breast cancer using
DCE-MRI. J Magn Reson Imaging. 29:1300–1307. 2009. View Article : Google Scholar : PubMed/NCBI
|
33
|
Padhani AR, Hayes C, Assersohn L, Powles
T, Makris A, Suckling J, Leach MO and Husband JE: Prediction of
clinicopathologic response of breast cancer to primary chemotherapy
at contrast-enhanced MR imaging: Initial clinical results.
Radiology. 239:361–374. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liu X, Xiang K, Geng GY, Wang SC, Ni M,
Zhang YF, Pan HF and Lv WF: Prognostic value of intratumor
metabolic heterogeneity parameters on 18F-FDG PET/CT for
patients with colorectal cancer. Contrast Media Mol Imaging.
2022:25862452022.PubMed/NCBI
|
35
|
Gerlinger M, Rowan AJ, Horswell S, Math M,
Larkin J, Endesfelder D, Gronroos E, Martinez P, Matthews N,
Stewart A, et al: Intratumor heterogeneity and branched evolution
revealed by multiregion sequencing. N Engl J Med. 366:883–892.
2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Asselin MC, O'Connor JPB, Boellaard R,
Thacker NA and Jackson A: Quantifying heterogeneity in human
tumours using MRI and PET. Eur J Cancer. 48:447–455. 2012.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Dasgupta A, Bhardwaj D, DiCenzo D, Fatima
K, Osapoetra LO, Quiaoit K, Saifuddin M, Brade S, Trudeau M, Gandhi
S, et al: Radiomics in predicting recurrence for patients with
locally advanced breast cancer using quantitative ultrasound.
Oncotarget. 12:2437–2448. 2021. View Article : Google Scholar : PubMed/NCBI
|
38
|
Xiong L, Chen H, Tang X, Chen B, Jiang X,
Liu L, Feng Y, Liu L and Li L: Ultrasound-based radiomics analysis
for predicting disease-free survival of invasive breast cancer.
Front Oncol. 11:6219932021. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tamez-Peña JG, Rodriguez-Rojas JA,
Gomez-Rueda H, Celaya-Padilla JM, Rivera-Prieto RA, Palacios-Corona
R, Garza-Montemayor M, Cardona-Huerta S and Treviño V:
Radiogenomics analysis identifies correlations of digital
mammography with clinical molecular signatures in breast cancer.
PLoS One. 13:e01938712018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Moreno AC, Shaitelman SF and Buchholz TA:
A clinical perspective on regional nodal irradiation for breast
cancer. Breast. 34 (Suppl 1):S85–S90. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zeidan YH, Habib JG, Ameye L, Paesmans M,
de Azambuja E, Gelber RD, Campbell I, Nordenskjöld B, Gutiérez J,
Anderson M, et al: Postmastectomy radiation therapy in women with
T1-T2 tumors and 1 to 3 positive lymph nodes: Analysis of the
breast international group 02–98 trial. Int J Radiat Oncol Biol
Phys. 101:316–324. 2018. View Article : Google Scholar : PubMed/NCBI
|