Role of growth differentiation factor 15 in cancer cachexia (Review)
- Authors:
- Tingting Ling
- Jing Zhang
- Fuwan Ding
- Lanlan Ma
-
Affiliations: Department of Oncology, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China, Department of Endocrinology and Metabolism, Affiliated Hospital of Weifang Medical College, Weifang, Shandong 261000, P.R. China, Department of Endocrinology, Yancheng Third People's Hospital, Yancheng, Jiangsu 224001, P.R. China, Graduate School, Weifang Medical College, Weifang, Shandong 261000, P.R. China - Published online on: September 13, 2023 https://doi.org/10.3892/ol.2023.14049
- Article Number: 462
-
Copyright: © Ling et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Evans WJ, Morley JE, Argilés J, Bales C, Baracos V, Guttridge D, Jatoi A, Kalantar-Zadeh K, Lochs H, Mantovani G, et al: Cachexia: A new definition. Clin Nutr. 27:793–799. 2008. View Article : Google Scholar : PubMed/NCBI | |
Baazim H, Antonio-Herrera L and Bergthaler A: The interplay of immunology and cachexia in infection and cancer. Nat Rev Immunol. 22:309–321. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, et al: Definition and classification of cancer cachexia: An international consensus. Lancet Oncol. 12:489–495. 2011. View Article : Google Scholar : PubMed/NCBI | |
Porporato PE: Understanding cachexia as a cancer metabolism syndrome. Oncogenesis. 5:e2002016. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Choi S, Park A, Do J, Nam D, Kim Y, Noh J, Lee KY, Maeng CH and Park KS: Bone marrow homeostasis is impaired via JAK/STAT and glucocorticoid signaling in cancer cachexia model. Cancers (Basel). 13:10592021. View Article : Google Scholar : PubMed/NCBI | |
Argilés JM, Stemmler B, López-Soriano FJ and Busquets S: Inter-tissue communication in cancer cachexia. Nat Rev Endocrinol. 15:9–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
Baracos VE, Martin L, Korc M, Guttridge DC and Fearon KCH: Cancer-associated cachexia. Nat Rev Dis Primers. 4:171052018. View Article : Google Scholar : PubMed/NCBI | |
Gupta A, Nshuti L, Grewal US, Sedhom R, Check DK, Parsons HM, Blaes AH, Virnig BA, Lustberg MB, Subbiah IM, et al: Financial burden of drugs prescribed for cancer-associated symptoms. JCO Oncol Pract. 18:140–147. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu CA, Zhang Q, Ruan GT, Shen LY, Xie HL, Liu T, Tang M, Zhang X, Yang M, Hu CL, et al: Novel diagnostic and prognostic tools for lung cancer cachexia: Based on nutritional and inflammatory status. Front Oncol. 12:8907452022. View Article : Google Scholar : PubMed/NCBI | |
Malla J, Zahra A, Venugopal S, Selvamani TY, Shoukrie SI, Selvaraj R, Dhanoa RK, Hamouda RK and Mostafa J: What role do inflammatory cytokines play in cancer cachexia? Cureus. 14:e267982022.PubMed/NCBI | |
Zeng R, Tong C and Xiong X: The molecular basis and therapeutic potential of leukemia inhibitory factor in cancer cachexia. Cancers (Basel). 14:29552022. View Article : Google Scholar : PubMed/NCBI | |
Lu SW, Pan HC, Hsu YH, Chang KC, Wu LW, Chen WY and Chang MS: IL-20 antagonist suppresses PD-L1 expression and prolongs survival in pancreatic cancer models. Nat Commun. 11:46112020. View Article : Google Scholar : PubMed/NCBI | |
Di Girolamo D and Tajbakhsh S: Pathological features of tissues and cell populations during cancer cachexia. Cell Regen. 11:152022. View Article : Google Scholar : PubMed/NCBI | |
Callaway CS, Delitto AE, Patel R, Nosacka RL, D'Lugos AC, Delitto D, Deyhle MR, Trevino JG, Judge SM and Judge AR: IL-8 released from human pancreatic cancer and tumor-associated stromal cells signals through a CXCR2-ERK1/2 axis to induce muscle atrophy. Cancers (Basel). 11:18632019. View Article : Google Scholar : PubMed/NCBI | |
Xiong H, Ye J, Xie K, Hu W, Xu N and Yang H: Exosomal IL-8 derived from Lung Cancer and Colon Cancer cells induced adipocyte atrophy via NF-κB signaling pathway. Lipids Health Dis. 21:1472022. View Article : Google Scholar : PubMed/NCBI | |
Suriben R, Chen M, Higbee J, Oeffinger J, Ventura R, Li B, Mondal K, Gao Z, Ayupova D, Taskar P, et al: Antibody-mediated inhibition of GDF15-GFRAL activity reverses cancer cachexia in mice. Nat Med. 26:1264–1270. 2020. View Article : Google Scholar : PubMed/NCBI | |
Belloum Y, Rannou-Bekono F and Favier FB: Cancer-induced cardiac cachexia: Pathogenesis and impact of physical activity (Review). Oncol Rep. 37:2543–2552. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nissinen TA, Hentilä J, Penna F, Lampinen A, Lautaoja JH, Fachada V, Holopainen T, Ritvos O, Kivelä R and Hulmi JJ: Treating cachexia using soluble ACVR2B improves survival, alters mTOR localization, and attenuates liver and spleen responses. J Cachexia Sarcopenia Muscle. 9:514–529. 2018. View Article : Google Scholar : PubMed/NCBI | |
Thibaut MM, Sboarina M, Roumain M, Pötgens SA, Neyrinck AM, Destrée F, Gillard J, Leclercq IA, Dachy G, Demoulin JB, et al: Inflammation-induced cholestasis in cancer cachexia. J Cachexia Sarcopenia Muscle. 12:70–90. 2021. View Article : Google Scholar : PubMed/NCBI | |
Peyta L, Jarnouen K, Pinault M, Coulouarn C, Guimaraes C, Goupille C, de Barros JP, Chevalier S, Dumas JF, Maillot F, et al: Regulation of hepatic cardiolipin metabolism by TNFα: Implication in cancer cachexia. Biochim Biophys Acta. 1851:1490–1500. 2015. View Article : Google Scholar : PubMed/NCBI | |
Patel HJ and Patel BM: TNF-α and cancer cachexia: Molecular insights and clinical implications. Life Sci. 170:56–63. 2017. View Article : Google Scholar : PubMed/NCBI | |
Black K, Garrett IR and Mundy GR: Chinese hamster ovarian cells transfected with the murine interleukin-6 gene cause hypercalcemia as well as cachexia, leukocytosis and thrombocytosis in tumor-bearing nude mice. Endocrinology. 128:2657–2659. 1991. View Article : Google Scholar : PubMed/NCBI | |
Bindels LB, Neyrinck AM, Loumaye A, Catry E, Walgrave H, Cherbuy C, Leclercq S, Van Hul M, Plovier H, Pachikian B, et al: Increased gut permeability in cancer cachexia: mechanisms and clinical relevance. Oncotarget. 9:18224–18238. 2018. View Article : Google Scholar : PubMed/NCBI | |
White JP, Puppa MJ, Narsale A and Carson JA: Characterization of the male ApcMin/+ mouse as a hypogonadism model related to cancer cachexia. Biol Open. 2:1346–1353. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tracey KJ, Wei H, Manogue KR, Fong Y, Hesse DG, Nguyen HT, Kuo GC, Beutler B, Cotran RS, Cerami A, et al: Cachectin/tumor necrosis factor induces cachexia, anemia, and inflammation. J Exp Med. 167:1211–1227. 1988. View Article : Google Scholar : PubMed/NCBI | |
Johns N, Stretch C, Tan BH, Solheim TS, Sørhaug S, Stephens NA, Gioulbasanis I, Skipworth RJ, Deans DA, Vigano A, et al: New genetic signatures associated with cancer cachexia as defined by low skeletal muscle index and weight loss. J Cachexia Sarcopenia Muscle. 8:122–130. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhong X, Narasimhan A, Silverman LM, Young AR, Shahda S, Liu S, Wan J, Liu Y, Koniaris LG and Zimmers TA: Sex specificity of pancreatic cancer cachexia phenotypes, mechanisms, and treatment in mice and humans: Role of Activin. J Cachexia Sarcopenia Muscle. 13:2146–2161. 2022. View Article : Google Scholar : PubMed/NCBI | |
Avancini A, Trestini I, Tregnago D, Lanza M, Menis J, Belluomini L, Milella M and Pilotto S: A multimodal approach to cancer-related cachexia: from theory to practice. Expert Rev Anticancer Ther. 21:819–826. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lockhart SM, Saudek V and O'Rahilly S: GDF15: A hormone conveying somatic distress to the brain. Endocr Rev. 41:bnaa0072020. View Article : Google Scholar : PubMed/NCBI | |
Lerner L, Tao J, Liu Q, Nicoletti R, Feng B, Krieger B, Mazsa E, Siddiquee Z, Wang R, Huang L, et al: MAP3K11/GDF15 axis is a critical driver of cancer cachexia. J Cachexia Sarcopenia Muscle. 7:467–482. 2016. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Mitsunaga S, Ikeda M, Aoyama T, Yoshizawa K, Yoshimatsu H, Kawai N, Masuda M, Miura T and Ochiai A: Clinical and tumor characteristics of patients with high serum levels of growth differentiation factor 15 in advanced pancreatic cancer. Cancers (Basel). 13:48422021. View Article : Google Scholar : PubMed/NCBI | |
Lerner L, Hayes TG, Tao N, Krieger B, Feng B, Wu Z, Nicoletti R, Chiu MI, Gyuris J and Garcia JM: Plasma growth differentiation factor 15 is associated with weight loss and mortality in cancer patients. J Cachexia Sarcopenia Muscle. 6:317–324. 2015. View Article : Google Scholar : PubMed/NCBI | |
Johnen H, Lin S, Kuffner T, Brown DA, Tsai VW, Bauskin AR, Wu L, Pankhurst G, Jiang L, Junankar S, et al: Tumor-induced anorexia and weight loss are mediated by the TGF-beta superfamily cytokine MIC-1. Nat Med. 13:1333–1340. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li P, Lv H, Zhang B, Duan R, Zhang X, Lin P, Song C and Liu Y: Growth differentiation factor 15 protects SH-SY5Y cells from rotenone-induced toxicity by suppressing mitochondrial apoptosis. Front Aging Neurosci. 14:8695582022. View Article : Google Scholar : PubMed/NCBI | |
Asrih M, Wei S, Nguyen TT, Yi HS, Ryu D and Gariani K: Overview of growth differentiation factor 15 in metabolic syndrome. J Cell Mol Med. 27:1157–1167. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wan Y and Fu J: GDF15 as a key disease target and biomarker: Linking chronic lung diseases and ageing. Mol Cell Biochem. Apr 24–2023.(Epub ahead of print). View Article : Google Scholar | |
Assadi A, Zahabi A and Hart RA: GDF15, an update of the physiological and pathological roles it plays: A review. Pflugers Arch. 472:1535–1546. 2020. View Article : Google Scholar : PubMed/NCBI | |
Johann K, Kleinert M and Klaus S: The Role of GDF15 as a Myomitokine. Cells. 10:29902021. View Article : Google Scholar : PubMed/NCBI | |
Wischhusen J, Melero I and Fridman WH: Growth/Differentiation Factor-15 (GDF-15): From biomarker to novel targetable immune checkpoint. Front Immunol. 11:9512020. View Article : Google Scholar : PubMed/NCBI | |
Tsai VW, Brown DA and Breit SN: Targeting the divergent TGFβ superfamily cytokine MIC-1/GDF15 for therapy of anorexia/cachexia syndromes. Curr Opin Support Palliat Care. 12:404–409. 2018. View Article : Google Scholar : PubMed/NCBI | |
Siddiqui JA, Pothuraju R, Khan P, Sharma G, Muniyan S, Seshacharyulu P, Jain M, Nasser MW and Batra SK: Pathophysiological role of growth differentiation factor 15 (GDF15) in obesity, cancer, and cachexia. Cytokine Growth Factor Rev. 64:71–83. 2022. View Article : Google Scholar : PubMed/NCBI | |
Niu Y, Zhang W, Shi J, Liu Y, Zhang H, Lin N, Li X, Qin L, Yang Z and Su Q: The relationship between circulating growth differentiation factor 15 levels and diabetic retinopathy in patients with type 2 diabetes. Front Endocrinol (Lausanne). 12:6273952021. View Article : Google Scholar : PubMed/NCBI | |
Tsui KH, Hsu SY, Chung LC, Lin YH, Feng TH, Lee TY, Chang PL and Juang HH: Growth differentiation factor-15: A p53- and demethylation-upregulating gene represses cell proliferation, invasion, and tumorigenesis in bladder carcinoma cells. Sci Rep. 5:128702015. View Article : Google Scholar : PubMed/NCBI | |
Joo M, Kim D, Lee MW, Lee HJ and Kim JM: GDF15 promotes cell growth, migration, and invasion in gastric cancer by inducing STAT3 activation. Int J Mol Sci. 24:29252023. View Article : Google Scholar : PubMed/NCBI | |
Li S, Ma YM, Zheng PS and Zhang P: GDF15 promotes the proliferation of cervical cancer cells by phosphorylating AKT1 and Erk1/2 through the receptor ErbB2. J Exp Clin Cancer Res. 37:802018. View Article : Google Scholar : PubMed/NCBI | |
Spanopoulou A and Gkretsi V: Growth differentiation factor 15 (GDF15) in cancer cell metastasis: From the cells to the patients. Clin Exp Metastasis. 37:451–464. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rochette L, Dogon G, Zeller M, Cottin Y and Vergely C: GDF15 and cardiac cells: Current concepts and new insights. Int J Mol Sci. 22:88892021. View Article : Google Scholar : PubMed/NCBI | |
Li L, Zhang R, Yang H, Zhang D, Liu J, Li J and Guo B: GDF15 knockdown suppresses cervical cancer cell migration in vitro through the TGF-β/Smad2/3/Snail1 pathway. FEBS Open Bio. 10:2750–2760. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang CY, Huang AQ, Zhou MH and Mei YA: GDF15 regulates Kv2.1-mediated outward K+ current through the Akt/mTOR signalling pathway in rat cerebellar granule cells. Biochem J. 460:35–47. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park SH, Yu M, Kim J and Moon Y: C/EBP homologous protein promotes NSAID-activated gene 1-linked pro-inflammatory signals and enterocyte invasion by enteropathogenic Escherichia coli. Microbes Infect. 19:110–121. 2017. View Article : Google Scholar : PubMed/NCBI | |
Molfino A, Amabile MI, Imbimbo G, Rizzo V, Pediconi F, Catalano C, Emiliani A, Belli R, Ramaccini C, Parisi C, et al: Association between growth differentiation factor-15 (GDF-15) serum levels, anorexia and low muscle mass among cancer patients. Cancers (Basel). 13:992020. View Article : Google Scholar : PubMed/NCBI | |
Sabatini PV, Frikke-Schmidt H, Arthurs J, Gordian D, Patel A, Rupp AC, Adams JM, Wang J, Beck Jørgensen S, Olson DP, et al: GFRAL-expressing neurons suppress food intake via aversive pathways. Proc Natl Acad Sci USA. 118:e20213571182021. View Article : Google Scholar : PubMed/NCBI | |
Cimino I, Kim H, Tung YCL, Pedersen K, Rimmington D, Tadross JA, Kohnke SN, Neves-Costa A, Barros A, Joaquim S, et al: Activation of the hypothalamic-pituitary-adrenal axis by exogenous and endogenous GDF15. Proc Natl Acad Sci USA. 118:e21068681182021. View Article : Google Scholar : PubMed/NCBI | |
Setiawan T, Sari IN, Wijaya YT, Julianto NM, Muhammad JA, Lee H, Chae JH and Kwon HY: Cancer cachexia: Molecular mechanisms and treatment strategies. J Hematol Oncol. 16:542023. View Article : Google Scholar : PubMed/NCBI | |
Bloch SA, Lee JY, Syburra T, Rosendahl U, Griffiths MJ, Kemp PR and Polkey MI: Increased expression of GDF-15 may mediate ICU-acquired weakness by down-regulating muscle microRNAs. Thorax. 70:219–228. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto H, Takeshima F, Haraguchi M, Akazawa Y, Matsushima K, Kitayama M, Ogihara K, Tabuchi M, Hashiguchi K, Yamaguchi N, et al: High serum concentrations of growth differentiation factor-15 and their association with Crohn's disease and a low skeletal muscle index. Sci Rep. 12:65912022. View Article : Google Scholar : PubMed/NCBI | |
Garfield BE, Crosby A, Shao D, Yang P, Read C, Sawiak S, Moore S, Parfitt L, Harries C, Rice M, et al: Growth/differentiation factor 15 causes TGFβ-activated kinase 1-dependent muscle atrophy in pulmonary arterial hypertension. Thorax. 74:164–176. 2019. View Article : Google Scholar : PubMed/NCBI | |
Deng M, Bian Y, Zhang Q, Zhou X and Hou G: Growth differentiation factor-15 as a biomarker for sarcopenia in patients with chronic obstructive pulmonary disease. Front Nutr. 9:8970972022. View Article : Google Scholar : PubMed/NCBI | |
Song M, Zhang Q, Tang M, Zhang X, Ruan G, Zhang X, Zhang K, Ge Y, Yang M, Li Q, et al: Associations of low hand grip strength with 1 year mortality of cancer cachexia: A multicentre observational study. J Cachexia Sarcopenia Muscle. 12:1489–1500. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Sun W, Gu X, Miao C, Feng L, Shen Q, Liu X and Zhang X: GDF-15 in tumor-derived exosomes promotes muscle atrophy via Bcl-2/caspase-3 pathway. Cell Death Discov. 8:1622022. View Article : Google Scholar : PubMed/NCBI | |
Tanno T, Bhanu NV, Oneal PA, Goh SH, Staker P, Lee YT, Moroney JW, Reed CH, Luban NL, Wang RH, et al: High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med. 13:1096–1101. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhou D, Zhang Y, Mamtawla G, Wan S, Gao X, Zhang L, Li G and Wang X: Iron overload is related to muscle wasting in patients with cachexia of gastric cancer: using quantitative proteome analysis. Med Oncol. 37:1132020. View Article : Google Scholar : PubMed/NCBI | |
Martin A, Castells J, Allibert V, Emerit A, Zolotoff C, Cardot-Ruffino V, Gallot YS, Vernus B, Chauvet V, Bartholin L, et al: Hypothalamic-pituitary-adrenal axis activation and glucocorticoid-responsive gene expression in skeletal muscle and liver of Apc mice. J Cachexia Sarcopenia Muscle. 13:1686–1703. 2022. View Article : Google Scholar : PubMed/NCBI | |
Laurens C, Parmar A, Murphy E, Carper D, Lair B, Maes P, Vion J, Boulet N, Fontaine C, Marquès M, et al: Growth and differentiation factor 15 is secreted by skeletal muscle during exercise and promotes lipolysis in humans. JCI Insight. 5:e1318702020. View Article : Google Scholar : PubMed/NCBI | |
Fouladiun M, Körner U, Bosaeus I, Daneryd P, Hyltander A and Lundholm KG: Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care-correlations with food intake, metabolism, exercise capacity, and hormones. Cancer. 103:2189–2198. 2005. View Article : Google Scholar : PubMed/NCBI | |
Elattar S, Dimri M and Satyanarayana A: The tumor secretory factor ZAG promotes white adipose tissue browning and energy wasting. FASEB J. 32:4727–4743. 2018. View Article : Google Scholar : PubMed/NCBI | |
Weber BZC, Arabaci DH and Kir S: Metabolic reprogramming in adipose tissue during cancer cachexia. Front Oncol. 12:8483942022. View Article : Google Scholar : PubMed/NCBI | |
Plotkin LI, Sanz N and Brun LR: Messages from the Mineral: How bone cells communicate with other tissues. Calcif Tissue Int. 113:39–47. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang H, Zhu G, Qian A and Chen W: F2r negatively regulates osteoclastogenesis through inhibiting the Akt and NFκB signaling pathways. Int J Biol Sci. 16:1629–1639. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zwickl H, Zwickl-Traxler E, Haushofer A, Seier J, Podar K, Weber M, Hackner K, Jacobi N, Pecherstorfer M and Vallet S: Effect of cachexia on bone turnover in cancer patients: A case-control study. BMC Cancer. 21:7442021. View Article : Google Scholar : PubMed/NCBI | |
Bonetto A, Kays JK, Parker VA, Matthews RR, Barreto R, Puppa MJ, Kang KS, Carson JA, Guise TA, Mohammad KS, et al: Differential bone loss in mouse models of colon cancer cachexia. Front Physiol. 7:6792016.PubMed/NCBI | |
Pin F, Jones AJ, Huot JR, Narasimhan A, Zimmers TA, Bonewald LF and Bonetto A: RANKL blockade reduces cachexia and bone loss induced by non-metastatic ovarian cancer in mice. J Bone Miner Res. 37:381–396. 2022. View Article : Google Scholar : PubMed/NCBI | |
Adesina OO, Jenkins IC, Wu QV, Fung EB, Narla RR, Lipkin EW, Mahajan K, Konkle BA and Kruse-Jarres R: Urinary cross-linked carboxyterminal telopeptide, a bone resorption marker, decreases after vaso-occlusive crises in adults with sickle cell disease. Blood Cells Mol Dis. 80:1023692020. View Article : Google Scholar : PubMed/NCBI | |
Cameron ME, Underwood PW, Williams IE, George TJ, Judge SM, Yarrow JF, Trevino JG and Judge AR: Osteopenia is associated with wasting in pancreatic adenocarcinoma and predicts survival after surgery. Cancer Med. 11:50–60. 2022. View Article : Google Scholar : PubMed/NCBI | |
Westhrin M, Moen SH, Holien T, Mylin AK, Heickendorff L, Olsen OE, Sundan A, Turesson I, Gimsing P, Waage A and Standal T: Growth differentiation factor 15 (GDF15) promotes osteoclast differentiation and inhibits osteoblast differentiation and high serum GDF15 levels are associated with multiple myeloma bone disease. Haematologica. 100:e511–e514. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hinoi E, Ochi H, Takarada T, Nakatani E, Iezaki T, Nakajima H, Fujita H, Takahata Y, Hidano S, Kobayashi T, et al: Positive regulation of osteoclastic differentiation by growth differentiation factor 15 upregulated in osteocytic cells under hypoxia. J Bone Miner Res. 27:938–949. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wakchoure S, Swain TM, Hentunen TA, Bauskin AR, Brown DA, Breit SN, Vuopala KS, Harris KW and Selander KS: Expression of macrophage inhibitory cytokine-1 in prostate cancer bone metastases induces osteoclast activation and weight loss. Prostate. 69:652–661. 2009. View Article : Google Scholar : PubMed/NCBI | |
Siddiqui JA, Seshacharyulu P, Muniyan S, Pothuraju R, Khan P, Vengoji R, Chaudhary S, Maurya SK, Lele SM, Jain M, et al: GDF15 promotes prostate cancer bone metastasis and colonization through osteoblastic CCL2 and RANKL activation. Bone Res. 10:62022. View Article : Google Scholar : PubMed/NCBI | |
Ahmed DS, Isnard S, Lin J, Routy B and Routy JP: GDF15/GFRAL pathway as a metabolic signature for cachexia in patients with cancer. J Cancer. 12:1125–1132. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang XW, Zhang Q, Song MM, Zhang KP, Zhang X, Ruan GT, Yang M, Ge YZ, Tang M, Li XR, et al: The prognostic effect of hemoglobin on patients with cancer cachexia: A multicenter retrospective cohort study. Support Care Cancer. 30:875–885. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Wang Y, Chen H, Yao S, Lai X, Qiu Y, Cai J, Huang Y, Wei X, Guan Y, et al: Inhibition of TGFβ improves hematopoietic stem cell niche and ameliorates cancer-related anemia. Stem Cell Res Ther. 12:652021. View Article : Google Scholar : PubMed/NCBI | |
Jiang F, Yu WJ, Wang XH, Tang YT, Guo L and Jiao XY: Regulation of hepcidin through GDF-15 in cancer-related anemia. Clin Chim Acta. 428:14–19. 2014. View Article : Google Scholar : PubMed/NCBI | |
Balsano R, Kruize Z, Lunardi M, Comandatore A, Barone M, Cavazzoni A, Re Cecconi AD, Morelli L, Wilmink H, Tiseo M, et al: Transforming growth factor-beta signaling in cancer-induced cachexia: From molecular pathways to the clinics. Cells. 11:26712022. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Ren J and Ten Dijke P: Targeting TGFβ signal transduction for cancer therapy. Signal Transduct Target Ther. 6:82021. View Article : Google Scholar : PubMed/NCBI | |
Greco SH, Tomkötter L, Vahle AK, Rokosh R, Avanzi A, Mahmood SK, Deutsch M, Alothman S, Alqunaibit D, Ochi A, et al: TGF-β blockade reduces mortality and metabolic changes in a validated murine model of pancreatic cancer cachexia. PLoS One. 10:e01327862015. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Jiang P, Liu F, Du X, Ma L, Ye S, Cao H, Sun P, Su N, Lin F, et al: GDF11 Regulates PC12 neural stem cells via ALK5-Dependent PI3K-Akt signaling pathway. Int J Mol Sci. 23:122792022. View Article : Google Scholar : PubMed/NCBI | |
Jones JE, Cadena SM, Gong C, Wang X, Chen Z, Wang SX, Vickers C, Chen H, Lach-Trifilieff E, Hadcock JR and Glass DJ: Supraphysiologic administration of GDF11 induces cachexia in part by upregulating GDF15. Cell Rep. 22:1522–1530. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zimmers TA, Jiang Y, Wang M, Liang TW, Rupert JE, Au ED, Marino FE, Couch ME and Koniaris LG: Exogenous GDF11 induces cardiac and skeletal muscle dysfunction and wasting. Basic Res Cardiol. 112:482017. View Article : Google Scholar : PubMed/NCBI | |
Ebner N, Anker SD and von Haehling S: Recent developments in the field of cachexia, sarcopenia, and muscle wasting: highlights from the 11th Cachexia Conference. J Cachexia Sarcopenia Muscle. 10:218–225. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ebner N, Anker SD and von Haehling S: Recent developments in the field of cachexia, sarcopenia, and muscle wasting: Highlights from the 12th Cachexia Conference. J Cachexia Sarcopenia Muscle. 11:274–285. 2020. View Article : Google Scholar : PubMed/NCBI | |
da Fonseca GWP, Sato R, de Nazaré Nunes Alves MJ and von Haehling S: Current advancements in pharmacotherapy for cancer cachexia. Expert Opin Pharmacother. 24:629–639. 2023. View Article : Google Scholar : PubMed/NCBI | |
Crawford J, Calle RA, Collins SM, Weng Y, Lubaczewski SL, Buckeridge C, Wang EQ, Harrington MA, Tarachandani A, Rossulek MI, et al: CT108/16-First-in-patient study of the GDF-15 inhibitor ponsegromab in patients with cancer and cachexia: Safety, tolerability, and exploratory measures of efficacy. Proceedings of the 114th Annual Meeting of the American Association for Cancer Research. 14–19. 2023.https://www.abstractsonline.com/pp8/#!/10828/presentation/10304 | |
Kim-Muller JY, Song L, LaCarubba Paulhus B, Pashos E, Li X, Rinaldi A, Joaquim S, Stansfield JC, Zhang J, Robertson A, et al: GDF15 neutralization restores muscle function and physical performance in a mouse model of cancer cachexia. Cell Rep. 42:1119472023. View Article : Google Scholar : PubMed/NCBI | |
Vignjević Petrinović S, Jauković A, Milošević M, Bugarski D and Budeč M: Targeting stress erythropoiesis pathways in cancer. Front Physiol. 13:8440422022. View Article : Google Scholar : PubMed/NCBI |