Application of organoids in precision immunotherapy of lung cancer (Review)
- Authors:
- Huichuan Tian
- Jiajun Ren
- Ruiyu Mou
- Yingjie Jia
-
Affiliations: Department of Medical Oncology, The First Teaching Hospital of Tianjin University of Chinese Medicine, Tianjin 300381, P.R. China - Published online on: September 26, 2023 https://doi.org/10.3892/ol.2023.14071
- Article Number: 484
-
Copyright: © Tian et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Howlader N, Forjaz G, Mooradian MJ, Meza R, Kong CY, Cronin KA, Mariotto AB, Lowy DR and Feuer EJ: The effect of advances in lung-cancer treatment on population mortality. N Engl J Med. 383:640–649. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kucherlapati R: Impact of precision medicine in oncology. Cancer J. 29:1–2. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen DS and Mellman I: Elements of cancer immunity and the cancer-immune set point. Nature. 541:321–330. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, Mukherjee A and Paul MK: Lung cancer immunotherapy: Progress, pitfalls, and promises. Mol Cancer. 22:402023. View Article : Google Scholar : PubMed/NCBI | |
Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F, Ahuja A, Ni A, Novik JB, Mangarin LMB, Abu-Akeel M, et al: Genomic features of response to combination immunotherapy in patients with advanced non-small-cell lung cancer. Cancer Cell. 33:843–852.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M, Morse MA, Van Cutsem E, McDermott R, Hill A, et al: Durable clinical benefit with Nivolumab plus Ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 36:773–779. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jenkins RW, Aref AR, Lizotte PH, Ivanova E, Stinson S, Zhou CW, Bowden M, Deng J, Liu H, Miao D, et al: Ex Vivo profiling of PD-1 blockade using Organotypic tumor spheroids. Cancer Discov. 8:196–215. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, Berent-Maoz B, Pang J, Chmielowski B, Cherry G, et al: Genomic and transcriptomic features of response to Anti-PD-1 therapy in metastatic melanoma. Cell. 165:35–44. 2016. View Article : Google Scholar : PubMed/NCBI | |
Harel M, Ortenberg R, Varanasi SK, Mangalhara KC, Mardamshina M, Markovits E, Baruch EN, Tripple V, Arama-Chayoth M, Greenberg E, et al: Proteomics of melanoma response to immunotherapy reveals mitochondrial dependence. Cell. 179:236–250.e18. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jamal-Hanjani M, Quezada SA, Larkin J and Swanton C: Translational implications of tumor heterogeneity. Clin Cancer Res. 21:1258–1266. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mestas J and Hughes CC: Of mice and not men: Differences between mouse and human immunology. J Immunol. 172:2731–2738. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jespersen H, Lindberg MF, Donia M, Söderberg EMV, Andersen R, Keller U, Ny L, Svane IM, Nilsson LM and Nilsson JA: Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model. Nat Commun. 8:7072017. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Shuen TWH, Toh TB, Chan XY, Liu M, Tan SY, Fan Y, Yang H, Lyer SG, Bonney GK, et al: Development of a new patient-derived xenograft humanised mouse model to study human-specific tumour microenvironment and immunotherapy. Gut. 67:1845–1854. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo GM, et al: Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer Discov. 4:998–1013. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wan ACA: Recapitulating Cell-cell interactions for Organoid Construction-are biomaterials dispensable? Trends Biotechnol. 34:711–721. 2016. View Article : Google Scholar : PubMed/NCBI | |
Clevers H: Modeling development and disease with organoids. Cell. 165:1586–1597. 2016. View Article : Google Scholar : PubMed/NCBI | |
Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma K and Sasai Y: Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 3:519–532. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ and Clevers H: Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 459:262–265. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kim M, Mun H, Sung CO, Cho EJ, Jeon HJ, Chun SM, Jung DJ, Shin TH, Jeong GS, Kim DK, et al: Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening. Nat Commun. 10:39912019. View Article : Google Scholar : PubMed/NCBI | |
Shi R, Radulovich N, Ng C, Liu N, Notsuda H, Cabanero M, Martins-Filho SN, Raghavan V, Li Q, Mer AS, et al: Organoid cultures as preclinical models of non-small cell lung cancer. Clin Cancer Res. 26:1162–174. 2020. View Article : Google Scholar : PubMed/NCBI | |
Strikoudis A, Cieślak A, Loffredo L, Chen YW, Patel N, Saqi A, Lederer DJ and Snoeck HW: Modeling of fibrotic lung disease using 3D organoids derived from human pluripotent stem cells. Cell Rep. 27:3709–3723.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
De Poel E, Lefferts JW and Beekman JM: Intestinal organoids for Cystic Fibrosis research. J Cyst Fibros. 19:S60–S64. 2020. View Article : Google Scholar : PubMed/NCBI | |
Paolicelli G, Luca A, Jose SS, Antonini M, Teloni I, Fric J and Zelante T: Using lung organoids to investigate epithelial barrier complexity and IL-17 signaling during respiratory infection. Front Immunol. 10:3232019. View Article : Google Scholar : PubMed/NCBI | |
Salahudeen AA, Choi SS, Rustagi A, Zhu J, de la O SM, Flynn RA, Margalef-Català M, Santos AJM, Ju J, Batish A, et al: Progenitor identification and SARS-CoV-2 infection in long-term human distal lung organoid cultures. Preprint. bioRxiv. Jul 27–2020.doi: 10.1101/2020.07.27.212076. PubMed/NCBI | |
Barkauskas CE, Chung MI, Fioret B, Gao X, Katsura H and Hogan BL: Lung organoids: Current uses and future promise. Development. 144:986–997. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH and Hogan BL: Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci USA. 106:12771–12775. 2009. View Article : Google Scholar : PubMed/NCBI | |
McQualter JL, Yuen K, Williams B and Bertoncello I: Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung. Proc Natl Acad Sci USA. 107:1414–9. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chen YW, Huang SX, de Carvalho ALRT, Ho SH, Islam MN, Volpi S, Notarangelo LD, Ciancanelli M, Casanova JL, Bhattacharya J, et al: A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat Cell Biol. 19:542–549. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sachs N, Papaspyropoulos A, Zomer-van Ommen DD, Heo I, Böttinger L, Klay D, Weeber F, Huelsz-Prince G, Iakobachvili N, Amatngalim GD, et al: Long-term expanding human airway organoids for disease modeling. EMBO J. 38:e1003002019. View Article : Google Scholar : PubMed/NCBI | |
Roerink SF, Sasaki N, Lee-Six H, Young MD, Alexandrov LB, Behjati S, Mitchell TJ, Grossmann S, Lightfoot H, Egan DA, et al: Intra-tumour diversification in colorectal cancer at the single-cell level. Nature. 556:457–62. 2018. View Article : Google Scholar : PubMed/NCBI | |
Subtil B, Iyer KK, Poel D, Bakkerus L, Gorris MAJ, Escalona JC, van den Dries K, Cambi A, Verheul HMW, de Vries IJM and Tauriello DVF: Dendritic cell phenotype and function in a 3D co-culture model of patient-derived metastatic colorectal cancer organoids. Front Immunol. 14:11052442023. View Article : Google Scholar : PubMed/NCBI | |
Bleijs M, van de Wetering M, Clevers H and Drost J: Xenograft and organoid model systems in cancer research. EMBO J. 38:e1016542019. View Article : Google Scholar : PubMed/NCBI | |
Weiswald LB, Bellet D and Dangles-Marie V: Spherical cancer models in tumor biology. Neoplasia. 17:1–15. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Zhang J, Chen S, Lu M, Luo X, Yao S, Liu S, Qin Y and Chen H: Tumor-associated macrophages provide a suitable microenvironment for non-small lung cancer invasion and progression. Lung Cancer. 4:188–196. 2011. View Article : Google Scholar | |
de Visser KE and Joyce JA: The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 41:374–403. 2023. View Article : Google Scholar : PubMed/NCBI | |
Luckett KA and Ganesh K: Engineering the immune microenvironment into organoid models. Ann Rev Cancer Biol. 7:171–187. 2023. View Article : Google Scholar | |
Yuki K, Cheng N, Nakano M and Kuo CJ: Organoid models of tumor immunology. Trends Immunol. 41:652–664. 2020. View Article : Google Scholar : PubMed/NCBI | |
Powley IR, Patel M, Miles G, Pringle H, Howells L, Thomas A, Kettleborough C, Bryans J, Hammonds T, MacFarlane M and Pritchard C: Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Br J Cancer. 122:735–744. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ouchi T, Morimura S, Dow LE, Miyoshi H and Udey MC: EpCAM (CD326) regulates intestinal epithelial integrity and stem cells via Rho-associated kinase. Cells. 10:2562021. View Article : Google Scholar : PubMed/NCBI | |
Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K and Sasai Y: A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 25:681–686. 2007. View Article : Google Scholar : PubMed/NCBI | |
Huo KG, D'Arcangelo E and Tsao MS: Patient-derived cell line, xenograft and organoid models in lung cancer therapy. Transl Lung Cancer Res. 9:2214–2232. 2020. View Article : Google Scholar : PubMed/NCBI | |
Karthaus WR, Iaquinta PJ, Drost J, Gracanin A, van Boxtel R, Wongvipat J, Dowling CM, Gao D, Begthel H, Sachs N, et al: Identification of multipotent luminal progenitor cells in human prostate organoid cultures. Cell. 159:163–175. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pamarthy S and Sabaawy HE: Patient derived organoids in prostate cancer: Improving therapeutic efficacy in precision medicine. Mol Cancer. 20:1252021. View Article : Google Scholar : PubMed/NCBI | |
Weeber F, Ooft SN, Dijkstra KK and Voest EE: Tumor organoids as a Pre-clinical cancer model for drug discovery. Cell Chem Biol. 24:1092–1100. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J, Fanchi LF, Slagter M, van der Velden DL, Kaing S, Kelderman S, et al: Generation of tumor-reactive T cells by Co-culture of peripheral blood lymphocytes and tumor organoids. Cell. 174:1586–1598.e12. 2018. View Article : Google Scholar : PubMed/NCBI | |
Takahashi N, Hoshi H, Higa A, Hiyama G, Tamura H, Ogawa M, Takagi K, Goda K, Okabe N, Muto S, et al: An in vitro system for evaluating molecular targeted drugs using lung patient-derived tumor organoids. Cells. 8:4812019. View Article : Google Scholar : PubMed/NCBI | |
Sontheimer-Phelps A, Hassell BA and Ingber DE: Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer. 19:65–81. 2019. View Article : Google Scholar : PubMed/NCBI | |
Aref AR, Campisi M, Ivanova E, Portell A, Larios D, Piel BP, Mathur N, Zhou C, Coakley RV, Bartels A, et al: 3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Lab Chip. 18:3129–3143. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jung DJ, Shin TH, Kim M, Sung CO, Jang SJ and Jeong GS: A one-stop microfluidic-based lung cancer organoid culture platform for testing drug sensitivity. Lab Chip. 19:2854–2865. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jenkins RW, Barbie DA and Flaherty KT: Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 118:9–16. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kitajima S, Ivanova E, Guo S, Yoshida R, Campisi M, Sundararaman SK, Tange S, Mitsuishi Y, Thai TC, Masuda S, et al: Suppression of STING associated with LKB1 loss in KRAS-driven lung cancer. Cancer Discov. 9:34–45. 2019. View Article : Google Scholar : PubMed/NCBI | |
Öhlinger K, Kolesnik T, Meindl C, Gallé B, Absenger-Novak M, Kolb-Lenz D and Fröhlich E: Air-liquid interface culture changes surface properties of A549 cells. Toxicol In Vitro. 60:369–382. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Ootani A and Kuo C: An Air-liquid interface culture system for 3D organoid culture of diverse primary gastrointestinal tissues. Methods Mol Biol. 1422:33–40. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ootani A, Li X, Sangiorgi E, Ho QT, Ueno H, Toda S, Sugihara H, Fujimoto K, Weissman IL, Capecchi MR and Kuo CJ: Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med. 15:701–706. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li X, Nadauld L, Ootani A, Corney DC, Pai RK, Gevaert O, Cantrell MA, Rack PG, Neal JT, Chan CW, et al: Oncogenic transformation of diverse gastrointestinal tissues in primary organoid culture. Nat Med. 20:769–777. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xia T, Du WL, Chen XY and Zhang YN: Organoid models of the tumor microenvironment and their applications. J Cell Mol Med. 25:5829–5841. 2021. View Article : Google Scholar : PubMed/NCBI | |
Finnberg NK, Gokare P, Lev A, Grivennikov SI, MacFarlane AW IV, Campbell KS, Winters RM, Kaputa K, Farma JM, Abbas AE, et al: Application of 3D tumoroid systems to define immune and cytotoxic therapeutic responses based on tumoroid and tissue slice culture molecular signatures. Oncotarget. 8:66747–66757. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G, Weeber F, Balgobind AV, Wind K, Gracanin A, Begthel H, et al: A living Biobank of breast cancer organoids captures disease heterogeneity. Cell. 172:373–386.e10. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mu P, Zhou S, Lv T, Xia F, Shen L, Wan J, Wang Y, Zhang H, Cai S, Peng J, et al: Newly developed 3D in vitro models to study tumor-immune interaction. J Exp Clin Cancer Res. 42:812023. View Article : Google Scholar : PubMed/NCBI | |
Koehler KR and Hashino E: 3D mouse embryonic stem cell culture for generating inner ear organoids. Nat Protocols. 9:1229–1244. 2014. View Article : Google Scholar : PubMed/NCBI | |
El Harane S, Zidi B, El Harane N, Krause KH, Matthes T and Preynat-Seauve O: Cancer spheroids and organoids as novel tools for research and therapy: State of the art and challenges to guide precision medicine. Cells. 12:10012023. View Article : Google Scholar : PubMed/NCBI | |
Mok TSK, Wu YL, Kudaba I, Kowalski DM, Cho BC, Turna HZ, Castro G Jr, Srimuninnimit V, Laktionov KK, Bondarenko I, et al: Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet. 393:1819–1830. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Dai Z, Wu W, Wang Z, Zhang N, Zhang L, Zeng WJ, Liu Z and Cheng Q: Regulatory mechanisms of immune checkpoints PD-L1 and CTLA-4 in cancer. J Exp Clin Cancer Res. 40:1842021. View Article : Google Scholar : PubMed/NCBI | |
Paz-Ares L, Ciuleanu TE, Cobo M, Schenker M, Zurawski B, Menezes J, Richardet E, Bennouna J, Felip E, Juan-Vidal O, et al: First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 22:198–211. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rudin CM, Awad MM, Navarro A, Gottfried M, Peters S, Csőszi T, Cheema PK, Rodriguez-Abreu D, Wollner M, Yang JC, et al: Pembrolizumab or placebo plus etoposide and platinum as first-line therapy for extensive-stage small-cell lung cancer: Randomized, double-blind, phase III KEYNOTE-604 study. J Clin Oncol. 38:2369–2379. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rizvi H, Sanchez-Vega F, La K, Chatila W, Jonsson P, Halpenny D, Plodkowski A, Long N, Sauter JL, Rekhtman N, et al: Molecular determinants of response to Anti-programmed cell death (PD)-1 and Anti-programmed Death-Ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing. J Clin Oncol. 36:633–641. 2018. View Article : Google Scholar : PubMed/NCBI | |
Felip E, Altorki N, Zhou C, Csőszi T, Vynnychenko I, Goloborodko O, Luft A, Akopov A, Martinez-Marti A, Kenmotsu H, et al: Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB-IIIA non-small-cell lung cancer (IMpower010): A randomised, multicentre, open-label, phase 3 trial. Lancet. 398:1344–1357. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wong DJ, Bauer TM, Gordon MS, Bene-Tchaleu F, Zhu J, Zhang X and Cha E: Safety and clinical activity of atezolizumab plus ipilimumab in locally advanced or metastatic non-small cell lung cancer: Results from a phase 1b trial. Clin Lung Cancer. 23:273–281. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wong SK and Iams WT: Front line applications and future directions of immunotherapy in small-cell lung cancer. Cancers. 13:5062021. View Article : Google Scholar : PubMed/NCBI | |
Iams WT, Porter J and Horn L: Immunotherapeutic approaches for small-cell lung cancer. Nat Rev Clin Oncol. 17:300–312. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mamdani H, Matosevic S, Khalid AB, Durm G and Jalal SI: Immunotherapy in lung cancer: Current landscape and future directions. Front Immunol. 13:8236182022. View Article : Google Scholar : PubMed/NCBI | |
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI | |
Spitzer MH, Carmi Y, Reticker-Flynn NE, Kwek SS, Madhireddy D, Martins MM, Gherardini PF, Prestwood TR, Chabon J, Bendall SC, et al: Systemic immunity is required for effective cancer immunotherapy. Cell. 168:487–502.e15. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wei SC, Levine JH, Cogdill AP, Zhao Y, Anang NAS, Andrews MC, Sharma P, Wang J, Wargo JA, Pe'er D and Allison JP: Distinct cellular mechanisms underlie Anti-CTLA-4 and Anti-PD-1 checkpoint blockade. Cell. 170:1120–33.e17. 2017. View Article : Google Scholar : PubMed/NCBI | |
Huang AC, Postow MA, Orlowski RJ, Mick R, Bengsch B, Manne S, Xu W, Harmon S, Giles JR, Wenz B, et al: T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature. 545:60–65. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A, Sica GL, Yu K, Koenig L, Patel NT, et al: Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc Natl Acad Sci USA. 114:4993–4998. 2017. View Article : Google Scholar : PubMed/NCBI | |
Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al: Nivolumab versus Everolimus in advanced renal-cell carcinoma. N Engl J Med. 373:1803–1813. 2015. View Article : Google Scholar : PubMed/NCBI | |
Migden MR, Rischin D, Schmults CD, Guminski A, Hauschild A, Lewis KD, Chung CH, Hernandez-Aya L, Lim AM, Chang ALS, et al: PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med. 379:341–351. 2018. View Article : Google Scholar : PubMed/NCBI | |
Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL, Ju J, Liu IH, Chiou SH, Salahudeen AA, Smith AR, et al: Organoid modeling of the tumor immune microenvironment. Cell. 175:1972–1988.e16. 2018. View Article : Google Scholar : PubMed/NCBI | |
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, Cowey CL, Schadendorf D, Wagstaff J, Dummer R, et al: Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 381:1535–1546. 2019. View Article : Google Scholar : PubMed/NCBI | |
González-Rodríguez E, Rodríguez-Abreu D and Boronat M: Nivolumab for Squamous-cell cancer of head and neck. N Engl J Med. 376:5952017. View Article : Google Scholar : PubMed/NCBI | |
Socinski MA, Jotte RM, Cappuzzo F, Orlandi F, Stroyakovskiy D, Nogami N, Rodríguez-Abreu D, Moro-Sibilot D, Thomas CA, Barlesi F, et al: Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 378:2288–2301. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Cong L and Cong X: Patient-derived organoids in precision medicine: Drug screening, organoid-on-a-chip and living organoid biobank. Front Oncol. 11:7621842021. View Article : Google Scholar : PubMed/NCBI | |
Kong JCH, Guerra GR, Millen RM, Roth S, Xu H, Neeson PJ, Darcy PK, Kershaw MH, Sampurno S, Malaterre J, et al: Tumor-infiltrating lymphocyte function predicts response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. JCO Precis Oncol. 2:1–15. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bhattacharya S, Calar K and de la Puente P: Mimicking tumor hypoxia and tumor-immune interactions employing three-dimensional in vitro models. J Exp Clin Cancer Res. 39:1–16. 2020. View Article : Google Scholar : PubMed/NCBI | |
Halldorsson S, Lucumi E, Gómez-Sjöberg R and Fleming RMT: Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron. 63:218–231. 2015. View Article : Google Scholar : PubMed/NCBI | |
Budczies J, Kirchner M, Kluck K, Kazdal D, Glade J, Allgäuer M, Kriegsmann M, Heußel CP, Herth FJ, Winter H, et al: A gene expression signature associated with B cells predicts benefit from immune checkpoint blockade in lung adenocarcinoma. Oncoimmunology. 10:18605862021. View Article : Google Scholar : PubMed/NCBI | |
Yi M, Li A, Zhou L, Chu Q, Luo S and Wu K: Immune signature-based risk stratification and prediction of immune checkpoint Inhibitor's efficacy for lung adenocarcinoma. Cancer Immunol Immunother. 70:1705–1719. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yilmaz A, Cui H, Caligiuri MA and Yu J: Chimeric antigen receptor-engineered natural killer cells for cancer immunotherapy. J Hematol Oncol. 13:1682021. View Article : Google Scholar : PubMed/NCBI | |
Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, et al: Harnessing the potential of CAR-T cell therapy: Progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med. 21:4492023. View Article : Google Scholar : PubMed/NCBI | |
Wen Q, Yang Z, Dai H, Feng A and Li Q: Radiomics study for predicting the expression of PD-L1 and tumor mutation burden in non-small cell lung cancer based on CT images and Clinicopathological features. Front Oncol. 11:6202462021. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Zhang L, Mo X, You J, Chen L, Fang J, Wang F, Jin Z, Zhang B and Zhang S: Current status and quality of radiomic studies for predicting immunotherapy response and outcome in patients with non-small cell lung cancer: A systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 49:345–360. 2021. View Article : Google Scholar : PubMed/NCBI | |
Khorrami M, Prasanna P, Gupta A, Patil P, Velu PD, Thawani R, Corredor G, Alilou M, Bera K, Fu P, et al: Changes in CT radiomic features associated with lymphocyte distribution predict overall survival and response to immunotherapy in non-small cell lung cancer. Cancer Immunol Res. 8:108–19. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rosenberg SA and Restifo NP: Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 348:62–68. 2015. View Article : Google Scholar : PubMed/NCBI | |
Waldman AD, Fritz JM and Lenardo MJ: A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat Rev Immunol. 20:651–668. 2020. View Article : Google Scholar : PubMed/NCBI | |
Majzner RG and Mackall CL: Clinical lessons learned from the first leg of the CAR T cell journey. Nat Med. 25:1341–1355. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kaushik G, Venkatesha S, Verma B, Vishwakarma B, Zhang AH and Wesa A: Preclinical in vitro and in vivo models for adoptive cell therapy of cancer. Cancer J. 28:257–262. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dekkers JF, Alieva M, Cleven A, Keramati F, Wezenaar AKL, van Vliet EJ, Puschhof J, Brazda P, Johanna I, Meringa AD, et al: Uncovering the mode of action of engineered T cells in patient cancer organoids. Nat Biotechnol. 41:60–69. 2023. View Article : Google Scholar : PubMed/NCBI | |
Michie J, Beavis PA, Freeman AJ, Vervoort SJ, Ramsbottom KM, Narasimhan V, Lelliott EJ, Lalaoui N, Ramsay RG, Johnstone RW, et al: Antagonism of IAPs enhances CAR T-cell efficacy. Cancer Immunol Res. 7:183–192. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schnalzger TE, de Groot MH, Zhang C, Mosa MH, Michels BE, Röder J, Darvishi T, Wels WS and Farin HF: 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J. 38:e1009282019. View Article : Google Scholar : PubMed/NCBI | |
Badalamenti G, Fanale D, Incorvaia L, Barraco N, Listì A, Maragliano R, Vincenzi B, Calò V, Iovanna JL, Bazan V and Russo A: Role of tumor-infiltrating lymphocytes in patients with solid tumors: Can a drop dig a stone. Cell Immunol. 343:1037532019. View Article : Google Scholar : PubMed/NCBI | |
Cattaneo CM, Dijkstra KK, Fanchi LF, Kelderman S, Kaing S, van Rooij N, van den Brink S, Schumacher TN and Voest EE: Tumor organoid-T-cell coculture systems. Nat Protoc. 15:15–39. 2020. View Article : Google Scholar : PubMed/NCBI | |
Islam SMR, Maeda T, Tamaoki N, Good ML, Kishton RJ, Paria BC, Yu Z, Bosch-Marce M, Bedanova NM, Liu C, et al: Reprogramming of Tumor-reactive Tumor-infiltrating Lymphocytes to Human-induced pluripotent stem cells. Cancer Res Commun. 3:917–932. 2023. View Article : Google Scholar : PubMed/NCBI | |
Raimondi G, Mato-Berciano A, Pascual-Sabater S, Rovira-Rigau M, Cuatrecasas M, Fondevila C, Sánchez-Cabús S, Begthel H, Boj SF, Clevers H and Fillat C: Patient-derived pancreatic tumour organoids identify therapeutic responses to oncolytic adenoviruses. EBioMedicine. 56:1027862020. View Article : Google Scholar : PubMed/NCBI | |
Deng J, Wang ES, Jenkins RW, Li S, Dries R, Yates K, Chhabra S, Huang W, Liu H, Aref AR, et al: CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 8:216–233. 2018. View Article : Google Scholar : PubMed/NCBI | |
Courau T, Bonnereau J, Chicoteau J, Bottois H, Remark R, Assante Miranda L, Toubert A, Blery M, Aparicio T, Allez M and Le Bourhis L: Cocultures of human colorectal tumor spheroids with immune cells reveal the therapeutic potential of MICA/B and NKG2A targeting for cancer treatment. J Immunother Cancer. 7:742019. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Exposito R, Semiannikova M, Griffiths B, Khan K, Barber LJ, Woolston A, Spain G, von Loga K, Challoner B, Patel R, et al: CEA expression heterogeneity and plasticity confer resistance to the CEA-targeting bispecific immunotherapy antibody cibisatamab (CEA-TCB) in patient-derived colorectal cancer organoids. J Immunother Cancer. 7:1012019. View Article : Google Scholar : PubMed/NCBI | |
Sun CP, Lan HR, Fang XL, Yang XY and Jin KT: Organoid models for precision cancer immunotherapy. Front Immunol. 13:7704652022. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Koo BK and Knoblich JA: Human organoids: Model systems for human biology and medicine. Nat Rev Mol Cell Biol. 21:571–584. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang HM, Zhang CY, Peng KC, Chen ZX, Su JW, Li YF, Li WF, Gao QY, Zhang SL, Chen YQ, et al: Using patient-derived organoids to predict locally advanced or metastatic lung cancer tumor response: A real-world study. Cell Rep Med. 4:1009112023. View Article : Google Scholar : PubMed/NCBI |