1
|
Banales JM, Marin JJG, Lamarca A,
Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen
JB, Braconi C, et al: Cholangiocarcinoma 2020: The next horizon in
mechanisms and management. Nat Rev Gastroenterol Hepatol.
17:557–588. 2020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Neuzillet C, Emery C, Teissier C, Bouée S
and Lièvre A: Patient healthcare trajectories of intrahepatic
cholangiocarcinoma in France: A nationwide retrospective analysis.
Lancet Reg Health Eur. 15:1003242022. View Article : Google Scholar : PubMed/NCBI
|
3
|
Khuntikeo N, Titapun A, Loilome W,
Yongvanit P, Thinkhamrop B, Chamadol N, Boonmars T, Nethanomsak T,
Andrews RH, Petney TN and Sithithaworn P: Current perspectives on
opisthorchiasis control and cholangiocarcinoma detection in
Southeast Asia. Front Med (Lausanne). 5:1172018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Arunsan P, Ittiprasert W, Smout MJ,
Cochran CJ, Mann VH, Chaiyadet S, Karinshak SE, Sripa B, Young ND,
Sotillo J, et al: Programmed knockout mutation of liver fluke
granulin attenuates virulence of infection-induced hepatobiliary
morbidity. Elife. 8:e414632019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Hoyos S, Navas MC, Restrepo JC and Botero
RC: Current controversies in cholangiocarcinoma. Biochim Biophys
Acta Mol Basis Dis. 1864:1461–1467. 2018. View Article : Google Scholar : PubMed/NCBI
|
6
|
Rizvi S, Khan SA, Hallemeier CL, Kelley RK
and Gores GJ: Cholangiocarcinoma-evolving concepts and therapeutic
strategies. Nat Rev Clin Oncol. 15:95–111. 2018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Brindley PJ, Bachini M, Ilyas SI, Khan SA,
Loukas A, Sirica AE, The BT, Wongkham S and Gores GJ:
Cholangiocarcinoma. Nat Rev Dis Primers. 7:652021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ljubimova JY, Fujita M, Khazenzon NM,
Ljubimov AV and Black KL: Changes in laminin isoforms associated
with brain tumor invasion and angiogenesis. Front Biosci. 11:81–88.
2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Garg M, Braunstein G and Koeffler HP:
LAMC2 as a therapeutic target for cancers. Expert Opin Ther
Targets. 18:979–982. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Moon YW, Rao G, Kim JJ, Shim HS, Park KS,
An SS, Kim B, Steeg PS, Sarfaraz S, Changwoo Lee L, et al: LAMC2
enhances the metastatic potential of lung adenocarcinoma. Cell
Death Differ. 22:1341–1352. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Huang D, Du C, Ji D, Xi J and Gu J:
Overexpression of LAMC2 predicts poor prognosis in colorectal
cancer patients and promotes cancer cell proliferation, migration,
and invasion. Tumour Biol. 39:10104283177058492017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Okada Y, Takahashi N, Takayama T and Goel
A: LAMC2 promotes cancer progression and gemcitabine resistance
through modulation of EMT and ATP-binding cassette transporters in
pancreatic ductal adenocarcinoma. Carcinogenesis. 42:546–556. 2021.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Takahashi S, Hasebe T, Oda T, Sasaki S,
Kinoshita T, Konishi M, Ochiai T and Ochiai A: Cytoplasmic
expression of laminin gamma2 chain correlates with postoperative
hepatic metastasis and poor prognosis in patients with pancreatic
ductal adenocarcinoma. Cancer. 94:1894–1901. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yang JL, Wang CCN, Cai JH, Chou CY, Lin YC
and Hung CC: Identification of GSN and LAMC2 as key prognostic
genes of bladder cancer by integrated bioinformatics analysis.
Cancers (Basel). 12:18092020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Guess CM and Quaranta V: Defining the role
of laminin-332 in carcinoma. Matrix Biol. 28:445–455. 2009.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Edge SB and Compton CC: The American joint
committee on cancer: The 7th edition of the AJCC cancer staging
manual and the future of TNM. Ann Surg Oncol. 17:1471–1474. 2010.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Khan SA, Tavolari S and Brandi G:
Cholangiocarcinoma: Epidemiology and risk factors. Liver Int. 39
(Suppl 1):S19–S31. 2019. View Article : Google Scholar
|
18
|
Ceci L, Zhou T, Lenci I, Meadows V,
Kennedy L, Li P, Ekser B, Milana M, Zhang W, Wu C, et al: Molecular
mechanisms linking risk factors to cholangiocarcinoma development.
Cancers (Basel). 14:14422022. View Article : Google Scholar : PubMed/NCBI
|
19
|
Baidoun F, Sarmini MT, Merjaneh Z and
Moustafa MA: Controversial risk factors for cholangiocarcinoma. Eur
J Gastroenterol Hepatol. 34:338–344. 2022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cholangiocarcinoma Working Group, :
Italian clinical practice guidelines on cholangiocarcinoma-part I:
Classification, diagnosis and staging. Dig Liver Dis. 52:1282–1293.
2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chung T and Park YN: Up-to-date pathologic
classification and molecular characteristics of intrahepatic
cholangiocarcinoma. Front Med (Lausanne). 9:8571402022. View Article : Google Scholar : PubMed/NCBI
|
22
|
Forner A, Vidili G, Rengo M, Bujanda L,
Ponz-Sarvisé M and Lamarca A: Clinical presentation, diagnosis and
staging of cholangiocarcinoma. Liver Int. 39 (Suppl 1):S98–S107.
2019. View Article : Google Scholar
|
23
|
Geizhals S and Lipner SR: Review of
onychocryptosis: Epidemiology, pathogenesis, risk factors,
diagnosis and treatment. Dermatol Online J. 25:13030/qt9985w2n0.
2019. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rousselle P and Scoazec JY: Laminin 332 in
cancer: When the extracellular matrix turns signals from cell
anchorage to cell movement. Semin Cancer Biol. 62:149–165. 2020.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Tsuruta D, Kobayashi H, Imanishi H,
Sugawara K, Ishii M and Jones JCR: Laminin-332-integrin
interaction: A target for cancer therapy? Curr Med Chem.
15:1968–1975. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang H, Cai J, Du S, Wei W and Shen X:
LAMC2 modulates the acidity of microenvironments to promote
invasion and migration of pancreatic cancer cells via regulating
AKT-dependent NHE1 activity. Exp Cell Res. 391:1119842020.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhou YM, Yao YL, Liu W, Shen XM, Shi LJ
and Wu L: MicroRNA-134 inhibits tumor stem cell migration and
invasion in oral squamous cell carcinomas via downregulation of
PI3K-Akt signaling pathway by inhibiting LAMC2 expression. Cancer
Biomark. 29:51–67. 2020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu M, Cai R, Wang T, Yang X, Wang M,
Kuang Z, Xie Y, Zhang J and Zheng Y: LAMC2 promotes the
proliferation of cancer cells and induce infiltration of
macrophages in non-small cell lung cancer. Ann Transl Med.
9:13922021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang D, Guo H, Feng W and Qiu H: LAMC2
regulated by microRNA-125a-5p accelerates the progression of
ovarian cancer via activating p38 MAPK signalling. Life Sci.
232:1166482019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Islam S, Kitagawa T, Baron B, Abiko Y,
Chiba I and Kuramitsu Y: ITGA2, LAMB3, and LAMC2 may be the
potential therapeutic targets in pancreatic ductal adenocarcinoma:
an integrated bioinformatics analysis. Sci Rep. 11:105632021.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Garg M, Kanojia D, Okamoto R, Jain S,
Madan V, Chien W, Sampath A, Ding LW, Xuan M, Said JW, et al:
Laminin-5γ-2 (LAMC2) is highly expressed in anaplastic thyroid
carcinoma and is associated with tumor progression, migration, and
invasion by modulating signaling of EGFR. J Clin Endocrinol Metab.
99:E62–E72. 2014. View Article : Google Scholar : PubMed/NCBI
|
32
|
Carpino G, Overi D, Melandro F, Grimaldi
A, Cardinale V, Di Matteo S, Mennini G, Rossi M, Alvaro D, Barnaba
V, et al: Matrisome analysis of intrahepatic cholangiocarcinoma
unveils a peculiar cancer-associated extracellular matrix
structure. Clin Proteomics. 16:372019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ye M, Song Y, Pan S, Chu M, Wang ZW and
Zhu X: Evolving roles of lysyl oxidase family in tumorigenesis and
cancer therapy. Pharmacol Ther. 215:1076332020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lin HY, Li CJ, Yang YL, Huang YH, Hsiau YT
and Chu PY: Roles of lysyl oxidase family members in the tumor
microenvironment and progression of liver cancer. Int J Mol Sci.
21:97512020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Barczyk M, Carracedo S and Gullberg D:
Integrins. Cell Tissue Res. 339:269–280. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Brown AC, Dysart MM, Clarke KC,
Stabenfeldt SE and Barker TH: Integrin α3β1 binding to fibronectin
is dependent on the ninth type III repeat. J Biol Chem.
290:25534–25547. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Giannelli G, Astigiano S, Antonaci S,
Morini M, Barbieri O, Noonan DM and Albini A: Role of the
alpha3beta1 and alpha6beta4 integrins in tumor invasion. Clin Exp
Metastasis. 19:217–223. 2002. View Article : Google Scholar : PubMed/NCBI
|
38
|
Islam K, Thummarati P, Kaewkong P, Sripa B
and Suthiphongchai T: Role of laminin and cognate receptors in
cholangiocarcinoma cell migration. Cell Adh Migr. 15:152–165. 2021.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Samaržija I, Dekanić A, Humphries JD,
Paradžik M, Stojanović N, Humphries MJ and Ambriović-Ristov A:
Integrin crosstalk contributes to the complexity of signalling and
unpredictable cancer cell fates. Cancers (Basel). 12:19102020.
View Article : Google Scholar : PubMed/NCBI
|