1
|
Vaupel P, Mayer A and Höckel M: Tumor
hypoxia and malignant progression. Methods Enzymol. 381:335–354.
2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Finicle BT, Jayashankar V and Edinger AL:
Nutrient scavenging in cancer. Nat Rev Cancer. 18:619–633. 2018.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Jain RK: Antiangiogenesis strategies
revisited: From starving tumors to alleviating hypoxia. Cancer
Cell. 26:605–622. 2014. View Article : Google Scholar : PubMed/NCBI
|
4
|
Whatcott CJ, Han H and Von Hoff DD:
Orchestrating the tumor microenvironment to improve survival for
patients with pancreatic cancer: Normalization, not destruction.
Cancer J. 21:299–306. 2015. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen Z, Han F, Du Y, Shi H and Zhou W:
Hypoxic microenvironment in cancer: Molecular mechanisms and
therapeutic interventions. Signal Transduct Target Ther. 8:702023.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhuang Y, Liu K, He Q, Gu X, Jiang C and
Wu J: Hypoxia signaling in cancer: Implications for therapeutic
interventions. MedComm (2020). 4:e2032023.PubMed/NCBI
|
7
|
Mizushima N and Komatsu M: Autophagy:
Renovation of cells and tissues. Cell. 147:728–741. 2011.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Levy JMM, Towers CG and Thorburn A:
Targeting autophagy in cancer. Nat Rev Cancer. 17:528–542. 2017.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Xie Y, Liu J, Kang R and Tang D: Mitophagy
receptors in tumor biology. Front Cell Dev Biol. 8:5942032020.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Green DR and Llambi F: Cell death
signaling. Cold Spring Harb Perspect Biol. 7:a0060802015.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Denton D and Kumar S: Autophagy-dependent
cell death. Cell Death Differ. 26:605–616. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hassan SN, Mohamed Yusoff AA, Idris Z,
Mohd Redzwan N and Ahmad F: A mini-review on anticancer-related
properties of azithromycin and its potential activities in
overcoming the challenges of glioblastoma. Fundam Clin Pharmacol.
37:918–927. 2023. View Article : Google Scholar : PubMed/NCBI
|
13
|
Moriya S, Komatsu S, Yamasaki K, Kawai Y,
Kokuba H, Hirota A, Che X, Inazu M, Gotoh A, Hiramoto M and
Miyazawa K: Targeting the integrated networks of aggresome
formation, proteasome, and autophagy potentiates ER stress-mediated
cell death in multiple myeloma cells. Int J Oncol. 46:474–486.
2015. View Article : Google Scholar : PubMed/NCBI
|
14
|
Mukai S, Moriya S, Hiramoto M, Kazama H,
Kokuba H, Che X, Yokoyama T, Sakamoto S, Sugawara A, Sunazuka T, et
al: Macrolides sensitize EGFR-TKI-induced non-apoptotic cell death
via blocking autophagy flux in pancreatic cancer cell lines. Int J
Oncol. 48:45–54. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Tanaka H, Hino H, Moriya S, Kazama H,
Miyazaki M, Takano N, Hiramoto M, Tsukahara K and Miyazawa K:
Comparison of autophagy inducibility in various tyrosine kinase
inhibitors and their enhanced cytotoxicity via inhibition of
autophagy in cancer cells in combined treatment with azithromycin.
Biochem Biophys Rep. 22:1007502020.PubMed/NCBI
|
16
|
Toriyama K, Takano N, Kokuba H, Kazama H,
Moriya S, Hiramoto M, Abe S and Miyazawa K: Azithromycin enhances
the cytotoxicity of DNA-damaging drugs via lysosomal membrane
permeabilization in lung cancer cells. Cancer Sci. 112:3324–3337.
2021. View Article : Google Scholar : PubMed/NCBI
|
17
|
Qiao X, Wang X, Shang Y, Li Y and Chen SZ:
Azithromycin enhances anticancer activity of TRAIL by inhibiting
autophagy and up-regulating the protein levels of DR4/5 in colon
cancer cells in vitro and in vivo. Cancer Commun (Lond).
38:432018.PubMed/NCBI
|
18
|
Asakura E, Nakayama H, Sugie M, Zhao YL,
Nadai M, Kitaichi K, Shimizu A, Miyoshi M, Takagi K, Takagi K and
Hasegawa T: Azithromycin reverses anticancer drug resistance and
modifies hepatobiliary excretion of doxorubicin in rats. Eur J
Pharmacol. 484:333–339. 2004. View Article : Google Scholar : PubMed/NCBI
|
19
|
Takano N, Hiramoto M, Yamada Y, Kokuba H,
Tokuhisa M, Hino H and Miyazawa K: Azithromycin, a potent autophagy
inhibitor for cancer therapy, perturbs cytoskeletal protein
dynamics. Br J Cancer. 128:1838–1849. 2023. View Article : Google Scholar : PubMed/NCBI
|
20
|
Fiorillo M, Tóth F, Sotgia F and Lisanti
MP: Doxycycline, azithromycin and vitamin C (DAV): A potent
combination therapy for targeting mitochondria and eradicating
cancer stem cells (CSCs). Aging (Albany NY). 11:2202–2216. 2019.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Ozkan T, Hekmatshoar Y, Karabay AZ, Koc A,
Altinok Gunes B, Karadag Gurel A and Sunguroglu A: Assessment of
azithromycin as an anticancer agent for treatment of imatinib
sensitive and resistant CML cells. Leuk Res. 102:1065232021.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Hassan SN, Mohamed Yusoff AA, Idris Z,
Mohd Redzwan N and Ahmad F: Exploring the cytotoxicity and
anticancer effects of doxycycline and azithromycin on human
glioblastoma multiforme cells. Neurol Res. 44:242–251. 2022.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Hill BG, Benavides GA, Lancaster JR Jr,
Ballinger S, Dell'talia L, Jianhua Z and Darley-Usmar VM:
Integration of cellular bioenergetics with mitochondrial quality
control and autophagy. Biol Chem. 393:1485–1512. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Brar SS, Meyer JN, Bortner CD, Van Houten
B and Martin WJ II: Mitochondrial DNA-depleted A549 cells are
resistant to bleomycin. Am J Physiol Lung Cell Mol Physiol.
303:L413–L424. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kikuchi R, Iwai Y, Tsuji T, Watanabe Y,
Koyama N, Yamaguchi K, Nakamura H and Aoshiba K: Hypercapnic tumor
microenvironment confers chemoresistance to lung cancer cells by
reprogramming mitochondrial metabolism in vitro. Free Radic Biol
Med. 134:200–214. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Kanda Y: Investigation of the freely
available easy-to-use software ‘EZR’ for medical statistics. Bone
Marrow Transplant. 48:452–458. 2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ricci C, Pastukh V, Leonard J, Turrens J,
Wilson G, Schaffer D and Schaffer SW: Mitochondrial DNA damage
triggers mitochondrial-superoxide generation and apoptosis. Am J
Physiol Cell Physiol. 294:C413–C422. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sulkshane P, Ram J, Thakur A, Reis N,
Kleifeld O and Glickman MH: Ubiquitination and receptor-mediated
mitophagy converge to eliminate oxidation-damaged mitochondria
during hypoxia. Redox Biol. 45:1020472021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu L, Feng D, Chen G, Chen M, Zheng Q,
Song P, Ma Q, Zhu C, Wang R, Qi W, et al: Mitochondrial
outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in
mammalian cells. Nat Cell Biol. 14:177–185. 2012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Band M, Joel A, Hernandez A and Avivi A:
Hypoxia-induced BNIP3 expression and mitophagy: In vivo comparison
of the rat and the hypoxia-tolerant mole rat, Spalax ehrenbergi.
FASEB J. 23:2327–2335. 2009. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang H, Bosch-Marce M, Shimoda LA, Tan
YS, Baek JH, Wesley JB, Gonzalez FJ and Semenza GL: Mitochondrial
autophagy is an HIF-1-dependent adaptive metabolic response to
hypoxia. J Biol Chem. 283:10892–10903. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fu ZJ, Wang ZY, Xu L, Chen XH, Li XX, Liao
WT, Ma HK, Jiang MD, Xu TT, Xu J, et al: HIF-1α-BNIP3-mediated
mitophagy in tubular cells protects against renal
ischemia/reperfusion injury. Redox Biol. 36:1016712020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li Y, Zheng W, Lu Y, Zheng Y, Pan L, Wu X,
Yuan Y, Shen Z, Ma S, Zhang X, et al: BNIP3L/NIX-mediated
mitophagy: Molecular mechanisms and implications for human disease.
Cell Death Dis. 13:142021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Shao Y, Liu Z, Liu J, Wang H, Huang L, Lin
T, Liu J, Wei Q, Zeng H, He G and Li X: Expression and epigenetic
regulatory mechanism of BNIP3 in clear cell renal cell carcinoma.
Int J Oncol. 54:348–360. 2019.PubMed/NCBI
|
35
|
Zhang J and Ney PA: Role of BNIP3 and NIX
in cell death, autophagy, and mitophagy. Cell Death Differ.
16:939–946. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sowter HM, Ratcliffe PJ, Watson P,
Greenberg AH and Harris AL: HIF-1-dependent regulation of hypoxic
induction of the cell death factors BNIP3 and NIX in human tumors.
Cancer Res. 61:6669–6673. 2001.PubMed/NCBI
|
37
|
Poole LP and Macleod KF: Mitophagy in
tumorigenesis and metastasis. Cell Mol Life Sci. 78:3817–3851.
2021. View Article : Google Scholar : PubMed/NCBI
|
38
|
Jing X, Yang F, Shao C, Wei K, Xie M, Shen
H and Shu Y: Role of hypoxia in cancer therapy by regulating the
tumor microenvironment. Mol Cancer. 18:1572019. View Article : Google Scholar : PubMed/NCBI
|
39
|
Li Y, Zhao L and Li XF: Hypoxia and the
tumor microenvironment. Technol Cancer Res Treat.
20:153303382110363042021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Sun Y, Wen F, Yan C, Su L, Luo J, Chi W
and Zhang S: Mitophagy protects the retina against anti-vascular
endothelial growth factor therapy-driven hypoxia via
hypoxia-inducible factor-1α signaling. Front Cell Dev Biol.
9:7278222021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Daskalaki I, Gkikas I and Tavernarakis N:
Hypoxia and selective autophagy in cancer development and therapy.
Front Cell Dev Biol. 6:1042018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang S, Tan J, Miao Y and Zhang Q:
Mitochondrial dynamics, mitophagy, and mitochondria-endoplasmic
reticulum contact sites crosstalk under hypoxia. Front Cell Dev
Biol. 10:8482142022. View Article : Google Scholar : PubMed/NCBI
|
43
|
Renna M, Schaffner C, Brown K, Shang S,
Tamayo MH, Hegyi K, Grimsey NJ, Cusens D, Coulter S, Cooper J, et
al: Azithromycin blocks autophagy and may predispose cystic
fibrosis patients to mycobacterial infection. J Clin Invest.
121:3554–3563. 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Nujić K, Smith M, Lee M, Belamarić D,
Tomašković L, Alihodžić S, Malnar I, Polančec D, Schneider K and
Eraković Haber V: Valosin containing protein (VCP) interacts with
macrolide antibiotics without mediating their anti-inflammatory
activities. Eur J Pharmacol. 677:163–172. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Yamashita G, Takano N, Kazama H, Tsukahara
K and Miyazawa K: p53 regulates lysosomal membrane permeabilization
as well as cytoprotective autophagy in response to DNA-damaging
drugs. Cell Death Discov. 8:5022022. View Article : Google Scholar : PubMed/NCBI
|
46
|
Johansson AC, Appelqvist H, Nilsson C,
Kågedal K, Roberg K and Öllinger K: Regulation of
apoptosis-associated lysosomal membrane permeabilization.
Apoptosis. 15:527–540. 2010. View Article : Google Scholar : PubMed/NCBI
|
47
|
Takeda A, Takano N, Kokuba H, Hino H,
Moriya S, Abe A, Hiramoto M, Tsukahara K and Miyazawa K: Macrolide
antibiotics enhance the antitumor effect of lansoprazole resulting
in lysosomal membrane permeabilization-associated cell death. Int J
Oncol. 57:1280–1292. 2020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Lai SL, Perng RP and Hwang J: p53 gene
status modulates the chemosensitivity of non-small cell lung cancer
cells. J Biomed Sci. 7:64–70. 2000. View Article : Google Scholar : PubMed/NCBI
|