
Gut microbiota influences the efficiency of immune checkpoint inhibitors by modulating the immune system (Review)
- Authors:
- Haihong Jiang
- Qinlu Zhang
-
Affiliations: Department of Oncology, Huaihe Hospital of Henan University, Kaifeng, Henan 475001, P.R. China, Department of Endocrinology, Huaihe Hospital of Henan University, Kaifeng, Henan 475001, P.R. China - Published online on: January 5, 2024 https://doi.org/10.3892/ol.2024.14221
- Article Number: 87
-
Copyright: © Jiang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Christofi T, Baritaki S, Falzone L, Libra M and Zaravinos A: Current perspectives in cancer immunotherapy. Cancers (Basel). 11:14722019. View Article : Google Scholar : PubMed/NCBI | |
Gupta SL, Basu S, Soni V and Jaiswal RK: Immunotherapy: An alternative promising therapeutic approach against cancers. Mol Biol Rep. 49:9903–9913. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kennedy LB and Salama AKS: A review of cancer immunotherapy toxicity. CA Cancer J Clin. 70:86–104. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shi Z, Li H, Song W, Zhou Z, Li Z and Zhang M: Emerging roles of the gut microbiota in cancer immunotherapy. Front Immunol. 14:11398212023. View Article : Google Scholar : PubMed/NCBI | |
Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G and Libra M: Gut microbiota and cancer: From pathogenesis to therapy. Cancers (Basel). 11:382019. View Article : Google Scholar : PubMed/NCBI | |
Kumagai T, Rahman F and Smith AM: The microbiome and radiation induced-bowel injury: Evidence for potential mechanistic role in disease pathogenesis. Nutrients. 10:14052018. View Article : Google Scholar : PubMed/NCBI | |
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, et al: A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 464:59–65. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M and Nageshwar Reddy D: Role of the normal gut microbiota. World J Gastroenterol. 21:8787–8803. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tuddenham S and Sears CL: The intestinal microbiome and health. Curr Opin Infect Dis. 28:464–470. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jain N: The early life education of the immune system: Moms, microbes and (missed) opportunities. Gut Microbes. 12:18245642020. View Article : Google Scholar : PubMed/NCBI | |
Gao Y, O'Hely M, Quinn TP, Ponsonby AL, Harrison LC, Frøkiær H, Tang MLK, Brix S, Kristiansen K, Burgner D, et al: Maternal gut microbiota during pregnancy and the composition of immune cells in infancy. Front Immunol. 13:9863402022. View Article : Google Scholar : PubMed/NCBI | |
Rio-Aige K, Azagra-Boronat I, Massot-Cladera M, Selma-Royo M, Parra-Llorca A, González S, García-Mantrana I, Castell M, Rodríguez-Lagunas MJ, Collado MC and Pérez Cano FJ: Association of maternal microbiota and diet in cord blood cytokine and immunoglobulin profiles. Int J Mol Sci. 22:17782021. View Article : Google Scholar : PubMed/NCBI | |
Henrick BM, Rodriguez L, Lakshmikanth T, Pou C, Henckel E, Arzoomand A, Olin A, Wang J, Mikes J, Tan Z, et al: Bifidobacteria-mediated immune system imprinting early in life. Cell. 184:3884–3898.e11. 2021. View Article : Google Scholar : PubMed/NCBI | |
Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT and Ley RE: Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA. 108 (Suppl 1):S4578–S4585. 2011. View Article : Google Scholar | |
Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, Abe F and Osawa R: Age-related changes in gut microbiota composition from newborn to centenarian: A cross-sectional study. BMC Microbiol. 16:902016. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Wang Y, Li H, Dai Y, Chen D, Wang M, Jiang X, Huang Z, Yu H, Huang J and Xiong Z: Altered fecal microbiota composition in older adults with frailty. Front Cell Infect Microbiol. 11:6961862021. View Article : Google Scholar : PubMed/NCBI | |
Cheng H, Guan X, Chen D and Ma W: The Th17/Treg cell balance: A gut microbiota-modulated story. Microorganisms. 7:5832019. View Article : Google Scholar : PubMed/NCBI | |
Lee GR: The balance of Th17 versus Treg cells in autoimmunity. Int J Mol Sci. 19:7302018. View Article : Google Scholar : PubMed/NCBI | |
Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, Finlay BB and Littman DR: Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe. 4:337–349. 2008. View Article : Google Scholar : PubMed/NCBI | |
Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y, et al: Induction of colonic regulatory T cells by indigenous Clostridium species. Science. 331:337–341. 2011. View Article : Google Scholar : PubMed/NCBI | |
Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA and Mazmanian SK: The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 332:974–977. 2011. View Article : Google Scholar : PubMed/NCBI | |
Erturk-Hasdemir D, Oh SF, Okan NA, Stefanetti G, Gazzaniga FS, Seeberger PH, Plevy SE and Kasper DL: Symbionts exploit complex signaling to educate the immune system. Proc Natl Acad Sci USA. 116:26157–26166. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Wu W, Chen L, Yang W, Huang X, Ma C, Chen F, Xiao Y, Zhao Y, Ma C, et al: Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis. Nat Commun. 9:35552018. View Article : Google Scholar : PubMed/NCBI | |
Martin-Gallausiaux C, Béguet-Crespel F, Marinelli L, Jamet A, Ledue F, Blottière HM and Lapaque N: Butyrate produced by gut commensal bacteria activates TGF-beta1 expression through the transcription factor SP1 in human intestinal epithelial cells. Sci Rep. 8:97422018. View Article : Google Scholar : PubMed/NCBI | |
Duscha A, Gisevius B, Hirschberg S, Yissachar N, Stangl GI, Dawin E, Bader V, Haase S, Kaisler J, David C, et al: Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell. 180:1067–1080.e16. 2020. View Article : Google Scholar : PubMed/NCBI | |
Levy M, Thaiss CA, Zeevi D, Dohnalová L, Zilberman-Schapira G, Mahdi JA, David E, Savidor A, Korem T, Herzig Y, et al: Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell. 163:1428–1443. 2015. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Xie S, Chi Z, Zhang J, Liu Y, Zhang L, Zheng M, Zhang X, Xia D, Ke Y, et al: Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity. 45:802–816. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yan F, Cao H, Cover TL, Whitehead R, Washington MK and Polk DB: Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology. 132:562–575. 2007. View Article : Google Scholar : PubMed/NCBI | |
Salemi R, Vivarelli S, Ricci D, Scillato M, Santagati M, Gattuso G, Falzone L and Libra M: Lactobacillus rhamnosus GG cell-free supernatant as a novel anti-cancer adjuvant. J Transl Med. 21:1952023. View Article : Google Scholar : PubMed/NCBI | |
Ottman N, Reunanen J, Meijerink M, Pietilä TE, Kainulainen V, Klievink J, Huuskonen L, Aalvink S, Skurnik M, Boeren S, et al: Pili-like proteins of Akkermansia muciniphila modulate host immune responses and gut barrier function. PLoS One. 12:e01730042017. View Article : Google Scholar : PubMed/NCBI | |
Alexander M, Ang QY, Nayak RR, Bustion AE, Sandy M, Zhang B, Upadhyay V, Pollard KS, Lynch SV and Turnbaugh PJ: Human gut bacterial metabolism drives Th17 activation and colitis. Cell Host Microbe. 30:17–30.e9. 2022. View Article : Google Scholar : PubMed/NCBI | |
Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, Lichtor T, Decker WK, Whelan RL, Kumara HMCS, et al: Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol. 35 (Suppl):S185–S198. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wei G, Zhang H, Zhao H, Wang J, Wu N, Li L, Wu J and Zhang D: Emerging immune checkpoints in the tumor microenvironment: Implications for cancer immunotherapy. Cancer Lett. 511:68–76. 2021. View Article : Google Scholar : PubMed/NCBI | |
Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T and Minato N: Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci USA. 99:12293–12297. 2002. View Article : Google Scholar : PubMed/NCBI | |
Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN, et al: Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 515:563–567. 2014. View Article : Google Scholar : PubMed/NCBI | |
Park JJ, Thi EP, Carpio VH, Bi Y, Cole AG, Dorsey BD, Fan K, Harasym T, Iott CL, Kadhim S, et al: Checkpoint inhibition through small molecule-induced internalization of programmed death-ligand 1. Nat Commun. 12:12222021. View Article : Google Scholar : PubMed/NCBI | |
Lee HT, Lee SH and Heo YS: Molecular interactions of antibody drugs targeting PD-1, PD-L1, and CTLA-4 in immuno-oncology. Molecules. 24:11902019. View Article : Google Scholar : PubMed/NCBI | |
Das R, Verma R, Sznol M, Boddupalli CS, Gettinger SN, Kluger H, Callahan M, Wolchok JD, Halaban R, Dhodapkar MV and Dhodapkar KM: Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo. J Immunol. 194:950–959. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shi AP, Tang XY, Xiong YL, Zheng KF, Liu YJ, Shi XG, Lv Y, Jiang T, Ma N and Zhao JB: Immune checkpoint LAG3 and Its Ligand FGL1 in cancer. Front Immunol. 12:7850912022. View Article : Google Scholar : PubMed/NCBI | |
Kandel S, Adhikary P, Li G and Cheng K: The TIM3/Gal9 signaling pathway: An emerging target for cancer immunotherapy. Cancer Lett. 510:67–78. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tan AC, Bagley SJ, Wen PY, Lim M, Platten M, Colman H, Ashley DM, Wick W, Chang SM, Galanis E, et al: Systematic review of combinations of targeted or immunotherapy in advanced solid tumors. J Immunother Cancer. 9:e0024592021. View Article : Google Scholar : PubMed/NCBI | |
Syn NL, Teng MWL, Mok TSK and Soo RA: De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 18:e731–e741. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sanmamed MF and Chen L: A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell. 175:313–326. 2018. View Article : Google Scholar : PubMed/NCBI | |
Boutros C, Tarhini A, Routier E, Lambotte O, Ladurie FL, Carbonnel F, Izzeddine H, Marabelle A, Champiat S, Berdelou A, et al: Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol. 13:473–486. 2016. View Article : Google Scholar : PubMed/NCBI | |
Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM, Chau I, Ernstoff MS, Gardner JM, Ginex P, et al: Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline. J Clin Oncol. 36:1714–1768. 2018. View Article : Google Scholar : PubMed/NCBI | |
Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 366:2443–2454. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ott PA, Bang YJ, Berton-Rigaud D, Elez E, Pishvaian MJ, Rugo HS, Puzanov I, Mehnert JM, Aung KL, Lopez J, et al: Safety and antitumor activity of pembrolizumab in advanced programmed death ligand 1-positive endometrial cancer: Results from the KEYNOTE-028 study. J Clin Oncol. 35:2535–2541. 2017. View Article : Google Scholar : PubMed/NCBI | |
Antonia SJ, Balmanoukian A, Brahmer J, Ou SI, Hellmann MD, Kim SW, Ahn MJ, Kim DW, Gutierrez M, Liu SV, et al: Clinical activity, tolerability, and long-term follow-up of durvalumab in patients with advanced NSCLC. J Thorac Oncol. 14:1794–1806. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schöffski P, Tan DSW, Martín M, Ochoa-de-Olza M, Sarantopoulos J, Carvajal RD, Kyi C, Esaki T, Prawira A, Akerley W, et al: Phase I/II study of the LAG-3 inhibitor ieramilimab (LAG525) ± anti-PD-1 spartalizumab (PDR001) in patients with advanced malignancies. J Immunother Cancer. 10:e0037762022. View Article : Google Scholar : PubMed/NCBI | |
Curigliano G, Gelderblom H, Mach N, Doi T, Tai D, Forde PM, Sarantopoulos J, Bedard PL, Lin CC, Hodi FS, et al: Phase I/Ib clinical trial of sabatolimab, an anti-TIM-3 antibody, alone and in combination with spartalizumab, an anti-PD-1 antibody, in advanced solid tumors. Clin Cancer Res. 27:3620–3629. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kelly CM, Qin LX, Whiting KA, Richards AL, Avutu V, Chan JE, Chi P, Dickson MA, Gounder MM, Keohan ML, et al: A phase II study of epacadostat and pembrolizumab in patients with advanced sarcoma. Clin Cancer Res. 29:2043–2051. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zakharia Y, McWilliams RR, Rixe O, Drabick J, Shaheen MF, Grossmann KF, Kolhe R, Pacholczyk R, Sadek R, Tennant LL, et al: Phase II trial of the IDO pathway inhibitor indoximod plus pembrolizumab for the treatment of patients with advanced melanoma. J Immunother Cancer. 9:e0020572021. View Article : Google Scholar : PubMed/NCBI | |
Lynch TJ, Bondarenko I, Luft A, Serwatowski P, Barlesi F, Chacko R, Sebastian M, Neal J, Lu H, Cuillerot JM and Reck M: Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: Results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 30:2046–2054. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wan MT and Ming ME: Nivolumab versus ipilimumab in the treatment of advanced melanoma: A critical appraisal: ORIGINAL ARTICLE. Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al: Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2017; 377: 1345-1356. Br J Dermatol. 179:296–300. 2018.PubMed/NCBI | |
Hellmann MD, Ciuleanu TE, Pluzanski A, Lee JS, Otterson GA, Audigier-Valette C, Minenza E, Linardou H, Burgers S, Salman P, et al: Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 378:2093–2104. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tannir NM, Signoretti S, Choueiri TK, McDermott DF, Motzer RJ, Flaifel A, Pignon JC, Ficial M, Frontera OA, George S, et al: Efficacy and safety of nivolumab plus ipilimumab versus sunitinib in first-line treatment of patients with advanced sarcomatoid renal cell carcinoma. Clin Cancer Res. 27:78–86. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rini BI, Powles T, Atkins MB, Escudier B, McDermott DF, Suarez C, Bracarda S, Stadler WM, Donskov F, Lee JL, et al: Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): A multicentre, open-label, phase 3, randomised controlled trial. Lancet. 393:2404–2415. 2019. View Article : Google Scholar : PubMed/NCBI | |
Garon EB, Hellmann MD, Rizvi NA, Carcereny E, Leighl NB, Ahn MJ, Eder JP, Balmanoukian AS, Aggarwal C, Horn L, et al: Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: Results from the phase I KEYNOTE-001 study. J Clin Oncol. 37:2518–2527. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yuan L, Jia GD, Lv XF, Xie SY, Guo SS, Lin DF, Liu LT, Luo DH, Li YF, Deng SW, et al: Camrelizumab combined with apatinib in patients with first-line platinum-resistant or PD-1 inhibitor resistant recurrent/metastatic nasopharyngeal carcinoma: A single-arm, phase 2 trial. Nat Commun. 14:48932023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Song Y, Zuo S, Zhang X, Liu H, Wang J, Wang J, Tang Y, Zheng W, Ying Z, et al: Antitumor activity and safety of camrelizumab combined with apatinib in patients with relapsed or refractory peripheral T-cell lymphoma: An open-label, multicenter, phase II study. Front Immunol. 14:11281722023. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Ma Y, Fan Y, Zhou J, Yang N, Yu Q, Zhuang W, Song W, Wang ZM, Li B, et al: A multicenter, open-label phase Ib/II study of cadonilimab (anti PD-1 and CTLA-4 bispecific antibody) monotherapy in previously treated advanced non-small-cell lung cancer (AK104-202 study). Lung Cancer. 184:1073552023. View Article : Google Scholar : PubMed/NCBI | |
Shui L, Yang X, Li J, Yi C, Sun Q and Zhu H: Gut microbiome as a potential factor for modulating resistance to cancer immunotherapy. Front Immunol. 10:29892020. View Article : Google Scholar : PubMed/NCBI | |
Park EM, Chelvanambi M, Bhutiani N, Kroemer G, Zitvogel L and Wargo JA: Targeting the gut and tumor microbiota in cancer. Nat Med. 28:690–703. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Liu Z and Chen T: Gut microbiota: A promising milestone in enhancing the efficacy of PD1/PD-L1 blockade therapy. Front Oncol. 12:8473502022. View Article : Google Scholar : PubMed/NCBI | |
Vétizou M, Pitt JM, Daillère R, Lepage P, Waldschmitt N, Flament C, Rusakiewicz S, Routy B, Roberti MP, Duong CP, et al: Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 350:1079–1084. 2015. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Li M, Liu B, Zhu H, Dai Q, Fan X, Mehta K, Huang C, Neupane P, Wang F, et al: Relating gut microbiome and its modulating factors to immunotherapy in solid tumors: A systematic review. Front Oncol. 11:6421102021. View Article : Google Scholar : PubMed/NCBI | |
Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 359:91–97. 2018. View Article : Google Scholar : PubMed/NCBI | |
Grenda A, Iwan E, Chmielewska I, Krawczyk P, Giza A, Bomba A, Frąk M, Rolska A, Szczyrek M, Kieszko R, et al: Presence of Akkermansiaceae in gut microbiome and immunotherapy effectiveness in patients with advanced non-small cell lung cancer. AMB Express. 12:862022. View Article : Google Scholar : PubMed/NCBI | |
Grenda A, Iwan E, Krawczyk P, Frąk M, Chmielewska I, Bomba A, Giza A, Rolska-Kopińska A, Szczyrek M, Kieszko R, et al: Attempting to identify bacterial allies in immunotherapy of NSCLC patients. Cancers (Basel). 14:62502022. View Article : Google Scholar : PubMed/NCBI | |
Newsome RC, Gharaibeh RZ, Pierce CM, da Silva WV, Paul S, Hogue SR, Yu Q, Antonia S, Conejo-Garcia JR, Robinson LA and Jobin C: Interaction of bacterial genera associated with therapeutic response to immune checkpoint PD-1 blockade in a United States cohort. Genome Med. 14:352022. View Article : Google Scholar : PubMed/NCBI | |
Lee KA, Thomas AM, Bolte LA, Björk JR, de Ruijter LK, Armanini F, Asnicar F, Blanco-Miguez A, Board R, Calbet-Llopart N, et al: Cross-cohort gut microbiome associations with immune checkpoint inhibitor response in advanced melanoma. Nat Med. 28:535–544. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cani PD, Depommier C, Derrien M, Everard A and de Vos WM: Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol. 19:625–637. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu X, Lv J, Guo F, Li J, Jia Y, Jiang D, Wang N, Zhang C, Kong L, Liu Y, et al: Gut microbiome influences the efficacy of PD-1 antibody immunotherapy on MSS-type colorectal cancer via metabolic pathway. Front Microbiol. 11:8142020. View Article : Google Scholar : PubMed/NCBI | |
Peiffer LB, White JR, Jones CB, Slottke RE, Ernst SE, Moran AE, Graff JN and Sfanos KS: Composition of gastrointestinal microbiota in association with treatment response in individuals with metastatic castrate resistant prostate cancer progressing on enzalutamide and initiating treatment with anti-PD-1 (pembrolizumab). Neoplasia. 32:1008222022. View Article : Google Scholar : PubMed/NCBI | |
Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, Prieto PA, Vicente D, Hoffman K, Wei SC, et al: Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 359:97–103. 2018. View Article : Google Scholar : PubMed/NCBI | |
Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, Luke JJ and Gajewski TF: The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 359:104–108. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hakozaki T, Richard C, Elkrief A, Hosomi Y, Benlaïfaoui M, Mimpen I, Terrisse S, Derosa L, Zitvogel L, Routy B and Okuma Y: The gut microbiome associates with immune checkpoint inhibition outcomes in patients with advanced non-small cell lung cancer. Cancer Immunol Res. 8:1243–1250. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Dong H, Xia L, Yang Y, Zhu Y, Shen Y, Zheng H, Yao C, Wang Y and Lu S: The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC. J Thorac Oncol. 14:1378–1389. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mao J, Wang D, Long J, Yang X, Lin J, Song Y, Xie F, Xun Z, Wang Y, Wang Y, et al: Gut microbiome is associated with the clinical response to anti-PD-1 based immunotherapy in hepatobiliary cancers. J Immunother Cancer. 9:e0033342021. View Article : Google Scholar : PubMed/NCBI | |
Shen YC, Lee PC, Kuo YL, Wu WK, Chen CC, Lei CH, Yeh CP, Hsu C, Hsu CH, Lin ZZ, et al: An exploratory study for the association of gut microbiome with efficacy of immune checkpoint inhibitor in patients with hepatocellular carcinoma. J Hepatocell Carcinoma. 8:809–822. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang F, He MM, Yao YC, Zhao X, Wang ZQ, Jin Y, Luo HY, Li JB, Wang FH, Qiu MZ, et al: Regorafenib plus toripalimab in patients with metastatic colorectal cancer: A phase Ib/II clinical trial and gut microbiome analysis. Cell Rep Med. 2:1003832021. View Article : Google Scholar : PubMed/NCBI | |
Wu YY, Lin CW, Cheng KS, Lin C, Wang YM, Lin IT, Chou YH and Hsu PN: Increased programmed death-ligand-1 expression in human gastric epithelial cells in Helicobacter pylori infection. Clin Exp Immunol. 161:551–559. 2010. View Article : Google Scholar : PubMed/NCBI | |
Park JS, Gazzaniga FS, Wu M, Luthens AK, Gillis J, Zheng W, LaFleur MW, Johnson SB, Morad G, Park EM, et al: Targeting PD-L2-RGMb overcomes microbiome-related immunotherapy resistance. Nature. 617:377–385. 2023. View Article : Google Scholar : PubMed/NCBI | |
Peng Z, Cheng S, Kou Y, Wang Z, Jin R, Hu H, Zhang X, Gong JF, Li J, Lu M, et al: The gut microbiome is associated with clinical response to anti-PD-1/PD-L1 immunotherapy in gastrointestinal cancer. Cancer Immunol Res. 8:1251–1261. 2020. View Article : Google Scholar : PubMed/NCBI | |
Nomura M, Nagatomo R, Doi K, Shimizu J, Baba K, Saito T, Matsumoto S, Inoue K and Muto M: Association of short-chain fatty acids in the gut microbiome with clinical response to treatment with nivolumab or pembrolizumab in patients with solid cancer tumors. JAMA Netw Open. 3:e2028952020. View Article : Google Scholar : PubMed/NCBI | |
He Y, Fu L, Li Y, Wang W, Gong M, Zhang J, Dong X, Huang J, Wang Q, Mackay CR, et al: Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ T cell immunity. Cell Metab. 33:988–1000.e7. 2021. View Article : Google Scholar : PubMed/NCBI | |
Coutzac C, Jouniaux JM, Paci A, Schmidt J, Mallardo D, Seck A, Asvatourian V, Cassard L, Saulnier P, Lacroix L, et al: Systemic short chain fatty acids limit antitumor effect of CTLA-4 blockade in hosts with cancer. Nat Commun. 11:21682020. View Article : Google Scholar : PubMed/NCBI | |
Lee PC, Wu CJ, Hung YW, Lee CJ, Chi CT, Lee IC, Yu-Lun K, Chou SH, Luo JC, Hou MC and Huang YH: Gut microbiota and metabolites associate with outcomes of immune checkpoint inhibitor-treated unresectable hepatocellular carcinoma. J Immunother Cancer. 10:e0047792022. View Article : Google Scholar : PubMed/NCBI | |
Jiang SS, Xie YL, Xiao XY, Kang ZR, Lin XL, Zhang L, Li CS, Qian Y, Xu PP, Leng XX, et al: Fusobacterium nucleatum-derived succinic acid induces tumor resistance to immunotherapy in colorectal cancer. Cell Host Microbe. 31:781–797.e9. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yang M, Wang Y, Yuan M, Tao M, Kong C, Li H, Tong J, Zhu H and Yan X: Antibiotic administration shortly before or after immunotherapy initiation is correlated with poor prognosis in solid cancer patients: An up-to-date systematic review and meta-analysis. Int Immunopharmacol. 88:1068762020. View Article : Google Scholar : PubMed/NCBI | |
Tinsley N, Zhou C, Tan G, Rack S, Lorigan P, Blackhall F, Krebs M, Carter L, Thistlethwaite F, Graham D and Cook N: Cumulative antibiotic use significantly decreases efficacy of checkpoint inhibitors in patients with advanced cancer. Oncologist. 25:55–63. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hakozaki T, Okuma Y, Omori M and Hosomi Y: Impact of prior antibiotic use on the efficacy of nivolumab for non-small cell lung cancer. Oncol Lett. 17:2946–2952. 2019.PubMed/NCBI | |
Derosa L, Hellmann MD, Spaziano M, Halpenny D, Fidelle M, Rizvi H, Long N, Plodkowski AJ, Arbour KC, Chaft JE, et al: Negative association of antibiotics on clinical activity of immune checkpoint inhibitors in patients with advanced renal cell and non-small-cell lung cancer. Ann Oncol. 29:1437–1444. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim J and Lee HK: The role of gut microbiota in modulating tumor growth and anticancer agent efficacy. Mol Cells. 44:356–362. 2021. View Article : Google Scholar : PubMed/NCBI | |
Son MY and Cho HS: Anticancer effects of gut microbiota-derived short-chain fatty acids in cancers. J Microbiol Biotechnol. 33:849–856. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li T, Han L, Ma S, Lin W, Ba X, Yan J, Huang Y, Tu S and Qin K: Interaction of gut microbiota with the tumor microenvironment: A new strategy for antitumor treatment and traditional Chinese medicine in colorectal cancer. Front Mol Biosci. 10:11403252023. View Article : Google Scholar : PubMed/NCBI | |
Andrews MC, Duong CPM, Gopalakrishnan V, Iebba V, Chen WS, Derosa L, Khan MAW, Cogdill AP, White MG, Wong MC, et al: Gut microbiota signatures are associated with toxicity to combined CTLA-4 and PD-1 blockade. Nat Med. 27:1432–1441. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dubin K, Callahan MK, Ren B, Khanin R, Viale A, Ling L, No D, Gobourne A, Littmann E, Huttenhower C, et al: Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat Commun. 7:103912016. View Article : Google Scholar : PubMed/NCBI | |
Liu T, Xiong Q, Li L and Hu Y: Intestinal microbiota predicts lung cancer patients at risk of immune-related diarrhea. Immunotherapy. 11:385–396. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, Benyamin FW, Lei YM, Jabri B, Alegre ML, et al: Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science. 350:1084–1089. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tomita Y, Goto Y, Sakata S, Imamura K, Minemura A, Oka K, Hayashi A, Jodai T, Akaike K, Anai M, et al: Clostridium butyricum therapy restores the decreased efficacy of immune checkpoint blockade in lung cancer patients receiving proton pump inhibitors. Oncoimmunology. 11:20810102022. View Article : Google Scholar : PubMed/NCBI | |
Dizman N, Meza L, Bergerot P, Alcantara M, Dorff T, Lyou Y, Frankel P, Cui Y, Mira V, Llamas M, et al: Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: A randomized phase 1 trial. Nat Med. 28:704–712. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tomita Y, Ikeda T, Sakata S, Saruwatari K, Sato R, Iyama S, Jodai T, Akaike K, Ishizuka S, Saeki S and Sakagami T: Association of probiotic Clostridium butyricum therapy with survival and response to immune checkpoint blockade in patients with lung cancer. Cancer Immunol Res. 8:1236–1242. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Yin Q, Chen L and Davis MM: Bifidobacterium can mitigate intestinal immunopathology in the context of CTLA-4 blockade. Proc Natl Acad Sci USA. 115:157–161. 2018. View Article : Google Scholar : PubMed/NCBI | |
Spencer CN, McQuade JL, Gopalakrishnan V, McCulloch JA, Vetizou M, Cogdill AP, Khan MAW, Zhang X, White MG, Peterson CB, et al: Dietary fiber and probiotics influence the gut microbiome and melanoma immunotherapy response. Science. 374:1632–1640. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao G, Shen S, Zhang T, Zhang J, Huang S, Sun Z and Zhang H: Lacticaseibacillus rhamnosus Probio-M9 enhanced the antitumor response to anti-PD-1 therapy by modulating intestinal metabolites. EBioMedicine. 91:1045332023. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Zheng X, Kang W, Hao H, Mao Y, Zhang H, Chen Y, Tan Y, He Y, Zhao W and Yin Y: Metagenomic and metabolomic analyses reveal synergistic effects of fecal microbiota transplantation and anti-PD-1 therapy on treating colorectal cancer. Front Immunol. 13:8749222022. View Article : Google Scholar : PubMed/NCBI | |
Shaikh FY, Gills JJ, Mohammad F, White JR, Stevens CM, Ding H, Fu J, Tam A, Blosser RL, Domingue JC, et al: Murine fecal microbiota transfer models selectively colonize human microbes and reveal transcriptional programs associated with response to neoadjuvant checkpoint inhibitors. Cancer Immunol Immunother. 71:2405–2420. 2022. View Article : Google Scholar : PubMed/NCBI | |
Baruch EN, Youngster I, Ben-Betzalel G, Ortenberg R, Lahat A, Katz L, Adler K, Dick-Necula D, Raskin S, Bloch N, et al: Fecal microbiota transplant promotes response in immunotherapy-refractory melanoma patients. Science. 371:602–609. 2021. View Article : Google Scholar : PubMed/NCBI | |
Davar D, Dzutsev AK, McCulloch JA, Rodrigues RR, Chauvin JM, Morrison RM, Deblasio RN, Menna C, Ding Q, Pagliano O, et al: Fecal microbiota transplant overcomes resistance to anti-PD-1 therapy in melanoma patients. Science. 371:595–602. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wiesnoski DH, Helmink BA, Gopalakrishnan V, Choi K, DuPont HL, Jiang ZD, Abu-Sbeih H, Sanchez CA, Chang CC, et al: Fecal microbiota transplantation for refractory immune checkpoint inhibitor-associated colitis. Nat Med. 24:1804–1808. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fasanello MK, Robillard KT, Boland PM, Bain AJ and Kanehira K: Use of fecal microbial transplantation for immune checkpoint inhibitor colitis. ACG Case Rep J. 7:e003602020. View Article : Google Scholar : PubMed/NCBI | |
Koo H and Morrow CD: Incongruence between dominant commensal donor microbes in recipient feces post fecal transplant and response to anti-PD-1 immunotherapy. BMC Microbiol. 21:2512021. View Article : Google Scholar : PubMed/NCBI | |
Jamal R, Messaoudene M, de Figuieredo M and Routy B: Future indications and clinical management for fecal microbiota transplantation (FMT) in immuno-oncology. Semin Immunol. 67:1017542023. View Article : Google Scholar : PubMed/NCBI |