Revealing neuropilin expression patterns in pancreatic cancer: From single‑cell to therapeutic opportunities (Review)
- Authors:
- Sikun Meng
- Tomoaki Hara
- Hiromichi Sato
- Shotaro Tatekawa
- Yoshiko Tsuji
- Yoshiko Saito
- Yumiko Hamano
- Yasuko Arao
- Noriko Gotoh
- Kazuhiko Ogawa
- Hideshi Ishii
-
Affiliations: Department of Medical Data Science, Center of Medical Innovation and Translational Research, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan, Department of Radiation Oncology, Osaka University Graduate School of Medicine, Suita, Osaka 565‑0871, Japan, Division of Cancer Cell Biology, Cancer Research Institute of Kanazawa University, Kanazawa, Ishikawa 920‑1192, Japan - Published online on: January 22, 2024 https://doi.org/10.3892/ol.2024.14247
- Article Number: 113
-
Copyright: © Meng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Soker S, Takashima S, Miao HQ, Neufeld G and Klagsbrun M: Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell. 92:735–745. 1998. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Chédotal A, He Z, Goodman CS and Tessier-Lavigne M: Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron. 19:547–559. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hu C and Jiang X: Role of NRP-1 in VEGF-VEGFR2-independent tumorigenesis. Target Oncol. 11:501–505. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kofler N and Simons M: The expanding role of neuropilin: Regulation of transforming growth factor-β and platelet-derived growth factor signaling in the vasculature. Curr Opin Hematol. 23:260–267. 2016. View Article : Google Scholar : PubMed/NCBI | |
Klotz DM, Kuhlmann JD, Link T, Goeckenjan M, Hofbauer LC, Göbel A, Rachner TD and Wimberger P: Clinical impact of soluble neuropilin-1 in ovarian cancer patients and its association with its circulating ligands of the HGF/c-MET axis. Front Oncol. 12:9748852022. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Parikh AA, Stoeltzing O, Fan F, McCarty MF, Wey J, Hicklin DJ and Ellis LM: Upregulation of neuropilin-1 by basic fibroblast growth factor enhances vascular smooth muscle cell migration in response to VEGF. Cytokine. 32:206–212. 2005. View Article : Google Scholar : PubMed/NCBI | |
Leclerc M, Voilin E, Gros G, Corgnac S, de Montpréville V, Validire P, Bismuth G and Mami-Chouaib F: Regulation of antitumour CD8 T-cell immunity and checkpoint blockade immunotherapy by neuropilin-1. Nat Commun. 10:33452019. View Article : Google Scholar : PubMed/NCBI | |
Bębnowska D, Grywalska E, Niedźwiedzka-Rystwej P, Sosnowska-Pasiarska B, Smok-Kalwat J, Pasiarski M, Góźdź S, Roliński J and Polkowski W: CAR-T cell therapy-an overview of targets in gastric cancer. J Clin Med. 9:18942020. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Zhang G, Shi Y, Qiu R and Khan AA: Neuropilin-1 (NRP-1) and magnetic nanoparticles, a potential combination for diagnosis and therapy of gliomas. Curr Pharm Des. 21:5434–5449. 2015. View Article : Google Scholar : PubMed/NCBI | |
Oplawski M, Dziobek K, Grabarek B, Zmarzły N, Dąbruś D, Januszyk P, Brus R, Tomala B and Boroń D: Expression of NRP-1 and NRP-2 in endometrial cancer. Curr Pharm Biotechnol. 20:254–260. 2019. View Article : Google Scholar : PubMed/NCBI | |
Förster S, Givehchi M, Nitschke K, Mayr T, Kilian K, Dutta S, Datta K, Nuhn P, Popovic Z, Muders MH and Erben P: Neuropilin-2 and Its transcript variants correlate with clinical outcome in bladder cancer. Genes (Basel). 12:5502021. View Article : Google Scholar : PubMed/NCBI | |
Tu DG, Chang WW, Jan MS, Tu CW, Lu YC and Tai CK: Promotion of metastasis of thyroid cancer cells via NRP-2-mediated induction. Oncol Lett. 12:4224–4230. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Wang H, Li C, Zhao Y, Wu L, Du X and Han Z: VEGF-A/neuropilin 1 pathway confers cancer stemness via activating Wnt/β-catenin axis in breast cancer cells. Cell Physiol Biochem. 44:1251–1262. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Zhang R, Ma L, Li Q, Zhao YL, Zhang GJ, Zhang D, Li WZ, Cao S, Wang L and Geng ZM: Neuropilin-1 is up-regulated by cancer-associated fibroblast-secreted IL-8 and associated with cell proliferation of gallbladder cancer. J Cell Mol Med. 24:12608–12618. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lungulescu C, Ghimpau V, Gheonea DI, Sur D and Lungulescu CV: The role of neuropilin-2 in the epithelial to mesenchymal transition of colorectal cancer: A systematic review. Biomedicines. 10:1722022. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Zhai B, Zhu H, Li W, Jiang W, Lei L, Zhang S, Qiao H, Jiang X and Sun X: The miR-141/neuropilin-1 axis is associated with the clinicopathology and contributes to the growth and metastasis of pancreatic cancer. Cancer Cell Int. 19:2482019. View Article : Google Scholar : PubMed/NCBI | |
Matkar PN, Jong ED, Ariyagunarajah R, Prud'homme GJ, Singh KK and Leong-Poi H: Jack of many trades: Multifaceted role of neuropilins in pancreatic cancer. Cancer Med. 7:5036–5046. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mercurio AM: VEGF/neuropilin signaling in cancer stem cells. Int J Mol Sci. 20:4902019. View Article : Google Scholar : PubMed/NCBI | |
Gohil SH, Iorgulescu JB, Braun DA, Keskin DB and Livak KJ: Applying high-dimensional single-cell technologies to the analysis of cancer immunotherapy. Nat Rev Clin Oncol. 18:244–256. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gu C, Limberg BJ, Whitaker GB, Perman B, Leahy DJ, Rosenbaum JS, Ginty DD and Kolodkin AL: Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165. J Biol Chem. 277:18069–18076. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Feng Y, Xie X, Wu H, Su XN, Qi J, Xin W, Gao L, Zhang Y, Shah VH and Zhu Q: Neuropilin-1 aggravates liver cirrhosis by promoting angiogenesis via VEGFR2-dependent PI3K/Akt pathway in hepatic sinusoidal endothelial cells. EBioMedicine. 43:525–536. 2019. View Article : Google Scholar : PubMed/NCBI | |
Timoshenko AV, Rastogi S and Lala PK: Migration-promoting role of VEGF-C and VEGF-C binding receptors in human breast cancer cells. Br J Cancer. 97:1090–1098. 2007. View Article : Google Scholar : PubMed/NCBI | |
Williams G, Eickholt BJ, Maison P, Prinjha R, Walsh FS and Doherty P: A complementary peptide approach applied to the design of novel semaphorin/neuropilin antagonists. J Neurochem. 92:1180–1190. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tominaga K, Minato H, Murayama T, Sasahara A, Nishimura T, Kiyokawa E, Kanauchi H, Shimizu S, Sato A, Nishioka K, et al: Semaphorin signaling via MICAL3 induces symmetric cell division to expand breast cancer stem-like cells. Proc Natl Acad Sci USA. 116:625–630. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Palanca P, Payo-Serafín T, Fondevila F, Méndez-Blanco C, San-Miguel B, Romero MR, Tuñón MJ, Marin JJG, González-Gallego J and Mauriz JL: Neuropilin-1 as a potential biomarker of prognosis and invasive-related parameters in liver and colorectal cancer: A systematic review and meta-analysis of human studies. Cancers (Basel). 14:34552022. View Article : Google Scholar : PubMed/NCBI | |
Curreli S, Wong BS, Latinovic O, Konstantopoulos K and Stamatos NM: Class 3 semaphorins induce F-actin reorganization in human dendritic cells: Role in cell migration. J Leukoc Biol. 100:1323–1334. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chang X, Yang Q, Zhang C, Zhang Y, Liang X, Liu Y and Xu G: Roles for VEGF-C/NRP-2 axis in regulating renal tubular epithelial cell survival and autophagy during serum deprivation. Cell Biochem Funct. 37:290–300. 2019. View Article : Google Scholar : PubMed/NCBI | |
Reichert S, Scheid S, Roth T, Herkel M, Petrova D, Linden A, Weberbauer M, Esser J, Diehl P, Grundmann S, et al: Semaphorin 3F promotes transendothelial migration of leukocytes in the inflammatory response after survived cardiac arrest. Inflammation. 42:1252–1264. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bollard J, Patte C, Radkova K, Massoma P, Chardon L, Valantin J, Gadot N, Goddard I, Vercherat C, Hervieu V, et al: Neuropilin-2 contributes to tumor progression in preclinical models of small intestinal neuroendocrine tumors. J Pathol. 249:343–355. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Wu T, Dong X and Zeng YA: Neuropilin-1 is upregulated by Wnt/β-catenin signaling and is important for mammary stem cells. Sci Rep. 7:109412017. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Huang Y, Zhang J, Wei Y, Mahoud S, Bakheet AM, Wang L, Zhou S and Tang J: Pathway-related molecules of VEGFC/D-VEGFR3/NRP2 axis in tumor lymphangiogenesis and lymphatic metastasis. Clin Chim Acta. 461:165–171. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yoon SJ, Shin SH, Yoon SK, Jung JH, You Y, Han IW, Choi DW and Heo JS: Appraisal of 5-year recurrence-free survival after surgery in pancreatic ductal adenocarcinoma. J Hepatobiliary Pancreat Sci. 28:287–296. 2021. View Article : Google Scholar : PubMed/NCBI | |
Belfiori G, Crippa S, Francesca A, Pagnanelli M, Tamburrino D, Gasparini G, Partelli S, Andreasi V, Rubini C, Zamboni G and Falconi M: Long-term survivors after upfront resection for pancreatic ductal adenocarcinoma: An actual 5-year analysis of disease-specific and post-recurrence survival. Ann Surg Oncol. 28:8249–8260. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH and Neoptolemos JP: Pancreatic cancer. Nat Rev Dis Primers. 2:160222016. View Article : Google Scholar : PubMed/NCBI | |
De Dosso S, Siebenhüner AR, Winder T, Meisel A, Fritsch R, Astaras C, Szturz P and Borner M: Treatment landscape of metastatic pancreatic cancer. Cancer Treat Rev. 96:1021802021. View Article : Google Scholar : PubMed/NCBI | |
Chang JC and Kundranda M: Novel diagnostic and predictive biomarkers in pancreatic adenocarcinoma. Int J Mol Sci. 18:6672017. View Article : Google Scholar : PubMed/NCBI | |
Long J, Zhang Y, Yu X, Yang J, LeBrun DG, Chen C, Yao Q and Li M: Overcoming drug resistance in pancreatic cancer. Expert Opin Ther Targets. 15:817–828. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bazira PJ and Mahadevan V: Anatomy of the pancreas and spleen. Surgery (Oxford). 40:213–218. 2022. View Article : Google Scholar | |
Neesse A, Michl P, Frese KK, Feig C, Cook N, Jacobetz MA, Lolkema MP, Buchholz M, Olive KP, Gress TM and Tuveson DA: Stromal biology and therapy in pancreatic cancer. Gut. 60:861–868. 2011. View Article : Google Scholar : PubMed/NCBI | |
Connor AA and Gallinger S: Pancreatic cancer evolution and heterogeneity: Integrating omics and clinical data. Nat Rev Cancer. 22:131–142. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chijimatsu R, Kobayashi S, Takeda Y, Kitakaze M, Tatekawa S, Arao Y, Nakayama M, Tachibana N, Saito T, Ennishi D, et al: Establishment of a reference single-cell RNA sequencing dataset for human pancreatic adenocarcinoma. iScience. 25:1046592022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, McAndrews KM and Kalluri R: Clinical and therapeutic relevance of cancer-associated fibroblasts. Nat Rev Clin Oncol. 18:792–804. 2021. View Article : Google Scholar : PubMed/NCBI | |
Elyada E, Bolisetty M, Laise P, Flynn WF, Courtois ET, Burkhart RA, Teinor JA, Belleau P, Biffi G, Lucito MS, et al: Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9:1102–1123. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, Murimwa G, Wright S, Gu X, Maddipati R, et al: Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 40:656–673.e7. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, Dekleva EN, Saunders T, Becerra CP, Tattersall IW, et al: Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 25:735–747. 2014. View Article : Google Scholar : PubMed/NCBI | |
Matkar PN, Singh KK, Rudenko D, Kim YJ, Kuliszewski MA, Prud'homme GJ, Hedley DW and Leong-Poi H: Novel regulatory role of neuropilin-1 in endothelial-to-mesenchymal transition and fibrosis in pancreatic ductal adenocarcinoma. Oncotarget. 7:69489–69506. 2016. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Lin P, Perrett I, Lin J, Liao YP, Chang CH, Jiang J, Wu N, Donahue T, Wainberg Z, et al: Tumor-penetrating peptide enhances transcytosis of silicasome-based chemotherapy for pancreatic cancer. J Clin Invest. 127:2007–2018. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pastushenko I and Blanpain C: EMT transition states during tumor progression and metastasis. Trends Cell Biol. 29:212–226. 2019. View Article : Google Scholar : PubMed/NCBI | |
Du B and Shim JS: Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 21:9652016. View Article : Google Scholar : PubMed/NCBI | |
Mak MP, Tong P, Diao L, Cardnell RJ, Gibbons DL, William WN, Skoulidis F, Parra ER, Rodriguez-Canales J, Wistuba II, et al: A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment following epithelial-to-mesenchymal transition. Clin Cancer Res. 22:609–620. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei C, Yang C, Wang S, Shi D, Zhang C, Lin X, Liu Q, Dou R and Xiong B: Crosstalk between cancer cells and tumor associated macrophages is required for mesenchymal circulating tumor cell-mediated colorectal cancer metastasis. Mol Cancer. 18:642019. View Article : Google Scholar : PubMed/NCBI | |
Feldker N, Ferrazzi F, Schuhwerk H, Widholz SA, Guenther K, Frisch I, Jakob K, Kleemann J, Riegel D, Bönisch U, et al: Genome-wide cooperation of EMT transcription factor ZEB1 with YAP and AP-1 in breast cancer. EMBO J. 39:e1032092020. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Lui KO and Zhou B: Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases. Nat Rev Cardiol. 15:445–456. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gorelova A, Berman M and Al Ghouleh I: Endothelial-to-mesenchymal transition in pulmonary arterial hypertension. Antioxid Redox Signal. 34:891–914. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu ZH, Zhang Y, Wang X, Fan XF, Zhang Y, Li X, Gong YS and Han LP: SIRT1 activation attenuates cardiac fibrosis by endothelial-to-mesenchymal transition. Biomed Pharmacother. 118:1092272019. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Research Network. Electronic address, . simpleandrew_aguirre@dfci.harvard.edu; Cancer Genome Atlas Research Network: Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell. 32:185–203.e13. 2017. View Article : Google Scholar : PubMed/NCBI | |
Reya T and Clevers H: Wnt signalling in stem cells and cancer. Nature. 434:843–850. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ishii H, Iwatsuki M, Ieta K, Ohta D, Haraguchi N, Mimori K and Mori M: Cancer stem cells and chemoradiation resistance. Cancer Sci. 99:1871–1877. 2008. View Article : Google Scholar : PubMed/NCBI | |
Noguchi K, Eguchi H, Konno M, Kawamoto K, Nishida N, Koseki J, Wada H, Marubashi S, Nagano H, Doki Y, et al: Susceptibility of pancreatic cancer stem cells to reprogramming. Cancer Sci. 106:1182–1187. 2015. View Article : Google Scholar : PubMed/NCBI | |
Grun D, Adhikary G and Eckert RL: NRP-1 interacts with GIPC1 and SYX to activate p38 MAPK signaling and cancer stem cell survival. Mol Carcinog. 58:488–499. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB and Achen MG: Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer. 14:159–172. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Huang Y, Zhang J, Xing B, Xuan W, Wang H, Huang H, Yang J and Tang J: NRP-2 in tumor lymphangiogenesis and lymphatic metastasis. Cancer Lett. 418:176–184. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Wang L, Yan J, Ma C, Lu J, Chen G, Chen S, Su F, Wang W and Su X: 131I-labeled monoclonal antibody targeting neuropilin receptor type-2 for tumor SPECT imaging. Int J Oncol. 50:649–659. 2017. View Article : Google Scholar : PubMed/NCBI | |
Miyauchi JT, Caponegro MD, Chen D, Choi MK, Li M and Tsirka SE: Deletion of neuropilin 1 from microglia or bone marrow-derived macrophages slows glioma progression. Cancer Res. 78:685–694. 2018. View Article : Google Scholar : PubMed/NCBI | |
Grandclement C and Borg C: Neuropilins: A new target for cancer therapy. Cancers (Basel). 3:1899–1928. 2011. View Article : Google Scholar : PubMed/NCBI | |
Peng K, Bai Y, Zhu Q, Hu B and Xu Y: Targeting VEGF-neuropilin interactions: A promising antitumor strategy. Drug Discov Today. 24:656–664. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zhang Z and Gao Q: Transfer of microRNA-25 by colorectal cancer cell-derived extracellular vesicles facilitates colorectal cancer development and metastasis. Mol Ther Nucleic Acids. 23:552–564. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Hu H and Liu H: RNA binding protein Lin28B confers gastric cancer cells stemness via directly binding to NRP-1. Biomed Pharmacother. 104:383–389. 2018. View Article : Google Scholar : PubMed/NCBI | |
Piskounova E, Polytarchou C, Thornton JE, LaPierre RJ, Pothoulakis C, Hagan JP, Iliopoulos D and Gregory RI: Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell. 147:1066–1079. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang D, Zhou M, Chen H, Wang H, Min J, Chen J, Wu S, Ni X, Zhang Y, et al: The KRAS/Lin28B axis maintains stemness of pancreatic cancer cells via the let-7i/TET3 pathway. Mol Oncol. 15:262–278. 2021. View Article : Google Scholar : PubMed/NCBI | |
Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, Yeom KH, Han J and Kim VN: TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell. 138:696–708. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Chen Y, Li C, Liu J, Ren H, Li L, Zheng X, Wang H and Han Z: RNA binding protein PUM2 promotes the stemness of breast cancer cells via competitively binding to neuropilin-1 (NRP-1) mRNA with miR-376a. Biomed Pharmacother. 114:1087722019. View Article : Google Scholar : PubMed/NCBI | |
Jimenez-Hernandez LE, Vazquez-Santillan K, Castro-Oropeza R, Martinez-Ruiz G, Muñoz-Galindo L, Gonzalez-Torres C, Cortes-Gonzalez CC, Victoria-Acosta G, Melendez-Zajgla J and Maldonado V: NRP1-positive lung cancer cells possess tumor-initiating properties. Oncol Rep. 39:349–357. 2018.PubMed/NCBI | |
Gerstberger S, Hafner M and Tuschl T: A census of human RNA-binding proteins. Nat Rev Genet. 15:829–845. 2014. View Article : Google Scholar : PubMed/NCBI | |
Uniewicz KA, Cross MJ and Fernig DG: Exogenous recombinant dimeric neuropilin-1 is sufficient to drive angiogenesis. J Biol Chem. 286:12–23. 2011. View Article : Google Scholar : PubMed/NCBI |