1
|
Bianchini G, De Angelis C, Licata L and
Gianni L: Treatment landscape of triple-negative breast
cancer-expanded options, evolving needs. Nat Rev Clin Oncol.
19:91–113. 2022. View Article : Google Scholar : PubMed/NCBI
|
2
|
Spring LM, Fell G, Arfe A, Sharma C,
Greenup R, Reynolds KL, Smith BL, Alexander B, Moy B, Isakoff SJ,
et al: Pathologic complete response after neoadjuvant chemotherapy
and impact on breast cancer recurrence and survival: A
comprehensive meta-analysis. Clin Cancer Res. 26:2838–2848. 2020.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Echeverria GV, Ge Z, Seth S, Seth S, Zhang
X, Jeter-Jones S, Zhou X, Cai S, Tu Y, McCoy A, et al: Resistance
to neoadjuvant chemotherapy in triple-negative breast cancer
mediated by a reversible drug-tolerant state. Sci Transl Med.
11:eaav09362019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Hoogstraat M, Lips EH, Mayayo-Peralta I,
Mulder L, Kristel P, van der Heijden I, Annunziato S, van Seijen M,
Nederlof PM, Sonke GS, et al: Comprehensive characterization of
pre- and post-treatment samples of breast cancer reveal potential
mechanisms of chemotherapy resistance. NPJ Breast Cancer. 8:602022.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Lips EH, Michaut M, Hoogstraat M, Mulder
L, Besselink NJ, Koudijs MJ, Cuppen E, Voest EE, Bernards R,
Nederlof PM, et al: Next generation sequencing of triple negative
breast cancer to find predictors for chemotherapy response. Breast
Cancer Res. 17:1342015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Zhao Y, Schaafsma E and Cheng C: Gene
signature-based prediction of triple-negative breast cancer patient
response to Neoadjuvant chemotherapy. Cancer Med. 9:6281–6295.
2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Nedeljkovic M and Damjanovic A: Mechanisms
of chemotherapy resistance in triple-negative breast cancer-how we
can rise to the challenge. Cells. 8:9572019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Robey RW, Pluchino KM, Hall MD, Fojo AT,
Bates SE and Gottesman MM: Revisiting the role of ABC transporters
in multidrug-resistant cancer. Nat Rev Cancer. 18:452–464. 2018.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Fu Y, Yang Q, Yang H and Zhang X: New
progress in the role of microRNAs in the diagnosis and prognosis of
triple negative breast cancer. Front Mol Biosci. 10:11624632023.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Sueta A, Fujiki Y, Goto-Yamaguchi L,
Tomiguchi M, Yamamoto-Ibusuki M, Iwase H and Yamamoto Y: Exosomal
miRNA profiles of triple-negative breast cancer in neoadjuvant
treatment. Oncol Lett. 22:8192021. View Article : Google Scholar : PubMed/NCBI
|
11
|
O'Brien J, Hayder H, Zayed Y and Peng C:
Overview of MicroRNA biogenesis, mechanisms of actions, and
circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar : PubMed/NCBI
|
12
|
O'Brien K, Breyne K, Ughetto S, Laurent LC
and Breakefield XO: RNA delivery by extracellular vesicles in
mammalian cells and its applications. Nat Rev Mol Cell Biol.
21:585–606. 2020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Si W, Shen J, Zheng H and Fan W: The role
and mechanisms of action of microRNAs in cancer drug resistance.
Clin Epigenetics. 11:252019. View Article : Google Scholar : PubMed/NCBI
|
14
|
An X, Sarmiento C, Tan T and Zhu H:
Regulation of multidrug resistance by microRNAs in anti-cancer
therapy. Acta Pharm Sin B. 7:38–51. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
van Niel G, Carter DRF, Clayton A, Lambert
DW, Raposo G and Vader P: Challenges and directions in studying
cell-cell communication by extracellular vesicles. Nat Rev Mol Cell
Biol. 23:369–382. 2022. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mitra R, Adams CM, Jiang W, Greenawalt E
and Eischen CM: Pan-cancer analysis reveals cooperativity of both
strands of microRNA that regulate tumorigenesis and patient
survival. Nat Commun. 11:9682020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gwak H, Park S, Kim J, Lee JD, Kim IS, Kim
SI, Hyun KA and Jung HI: Microfluidic chip for rapid and selective
isolation of tumor-derived extracellular vesicles for early
diagnosis and metastatic risk evaluation of breast cancer. Biosens
Bioelectron. 192:1134952021. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kim MW, Park S, Lee H, Gwak H, Hyun KA,
Kim JY, Jung HI and Il Kim S: Multi-miRNA panel of tumor-derived
extracellular vesicles as promising diagnostic biomarkers of
early-stage breast cancer. Cancer Sci. 112:5078–5087. 2021.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Gradishar WJ, Anderson BO, Abraham J, Aft
R, Agnese D, Allison KH, Blair SL, Burstein HJ, Dang C, Elias AD,
et al: Breast Cancer, Version 3.2020, NCCN Clinical practice
guidelines in oncology. J Natl Compr Canc Netw. 18:452–478. 2020.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Kim MW, Niidome T and Lee R: Glycol
Chitosan-Docosahexaenoic acid liposomes for drug delivery:
Synergistic effect of doxorubicin-rapamycin in drug-resistant
breast cancer. Mar Drugs. 17:5812019. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kim MW, Koh H, Kim JY, Lee S, Lee H, Kim
Y, Hwang HK and Kim SI: Tumor-specific miRNA signatures in
combination with CA19-9 for liquid biopsy-based detection of PDAC.
Int J Mol Sci. 22:136212021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen X, Wang YW, Xing AY, Xiang S, Shi DB,
Liu L, Li YX and Gao P: Suppression of SPIN1-mediated PI3K-Akt
pathway by miR-489 increases chemosensitivity in breast cancer. J
Pathol. 239:459–472. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi
Y, Xiong W, Li G, Lu J, Fodstad O, et al: MicroRNA-125b confers the
resistance of breast cancer cells to paclitaxel through Suppression
of Pro-apoptotic Bcl-2 Antagonist Killer 1 (Bak1) Expression. J
Biol Chem. 285:21496–21507. 2010. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tao L, Wu YQ and Zhang SP: MiR-21-5p
enhances the progression and paclitaxel resistance in
drug-resistant breast cancer cell lines by targeting PDCD4.
Neoplasma. 66:746–755. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yu DD, Lv MM, Chen WX, Zhong SL, Zhang XH,
Chen L, Ma TF, Tang JH and Zhao JH: Role of miR-155 in drug
resistance of breast cancer. Tumour Biol. 36:1395–1401. 2015.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Chen X, Lu P, Wang DD, Yang SJ, Wu Y, Shen
HY, Zhong SL, Zhao JH and Tang JH: The role of miRNAs in drug
resistance and prognosis of breast cancer formalin-fixed
paraffin-embedded tissues. Gene. 595:221–226. 2016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Si Z, Zhong Y, Lao S, Wu Y, Zhong G and
Zeng W: The Role of miRNAs in the resistance of anthracyclines in
breast cancer: A systematic review. Front Oncol. 12:8991452022.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(T)(−Delta Delta C) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Hatzis C, Pusztai L, Valero V, Booser DJ,
Esserman L, Lluch A, Vidaurre T, Holmes F, Souchon E, Wang H, et
al: A genomic predictor of response and survival following
taxane-anthracycline chemotherapy for invasive breast cancer. JAMA.
305:1873–1881. 2011. View Article : Google Scholar : PubMed/NCBI
|
30
|
Horak CE, Pusztai L, Xing G, Trifan OC,
Saura C, Tseng LM, Chan S, Welcher R and Liu D: Biomarker analysis
of neoadjuvant doxorubicin/cyclophosphamide followed by ixabepilone
or paclitaxel in early-stage breast cancer. Clin Cancer Res.
19:1587–1595. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang LK, Feng ZX, Wang X, Wang XW and
Zhang XG: DEGseq: An R package for identifying differentially
expressed genes from RNA-seq data. Bioinformatics. 26:136–138.
2010. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ito K and Murphy D: Application of ggplot2
to pharmacometric graphics. CPT Pharmacometrics Syst Pharmacol.
2:e792013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yu GC, Wang LG, Han YY and He QY:
clusterProfiler: An R Package for comparing biological themes among
gene clusters. Omics. 16:284–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Liberzon A, Subramanian A, Pinchback R,
Thorvaldsdóttir H, Tamayo P and Mesirov JP: Molecular signatures
database (MSigDB) 3.0. Bioinformatics. 27:1739–1740. 2011.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Escola JM, Kleijmeer MJ, Stoorvogel W,
Griffith JM, Yoshie O and Geuze HJ: Selective enrichment of
tetraspan proteins on the internal vesicles of multivesicular
endosomes and on exosomes secreted by human B-lymphocytes. J Biol
Chem. 273:20121–20127. 1998. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen DS and Mellman I: Elements of cancer
immunity and the cancer-immune set point. Nature. 541:321–330.
2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Dong X, Bai X, Ni J, Zhang H, Duan W,
Graham P and Li Y: Exosomes and breast cancer drug resistance. Cell
Death Dis. 11:9872020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Marra A, Trapani D, Viale G, Criscitiello
C and Curigliano G: Practical classification of triple-negative
breast cancer: Intratumoral heterogeneity, mechanisms of drug
resistance, and novel therapies. NPJ Breast Cancer. 6:542020.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Wang M, Yu F, Ding H, Wang Y, Li P and
Wang K: Emerging function and clinical values of exosomal MicroRNAs
in cancer. Mol Ther Nucleic Acids. 16:791–804. 2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Park S, Kim J, Cho Y, Ahn S, Kim G, Hwang
D, Chang Y, Ha S, Choi Y, Lee MH, et al: Promotion of tumorigenesis
by miR-1260b-targeting CASP8: Potential diagnostic and prognostic
marker for breast cancer. Cancer Sci. 113:2097–2108. 2022.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Storchel PH, Thummler J, Siegel G,
Aksoy-Aksel A, Zampa F, Sumer S and Schratt G: A large-scale
functional screen identifies Nova1 and Ncoa3 as regulators of
neuronal miRNA function. Embo J. 34:2237–2254. 2015. View Article : Google Scholar : PubMed/NCBI
|
42
|
Zhang YA, Liu HN, Zhu JM, Zhang DY, Shen
XZ and Liu TT: RNA binding protein Nova1 promotes tumor growth in
vivo and its potential mechanism as an oncogene may due to its
interaction with GABAA Receptor-γ2. J Biomed Sci.
23:712016. View Article : Google Scholar : PubMed/NCBI
|
43
|
Catalano RD, Wilson MR, Boddy SC, McKinlay
AT, Sales KJ and Jabbour HN: Hypoxia and prostaglandin E receptor 4
signalling pathways synergise to promote endometrial adenocarcinoma
cell proliferation and tumour growth. PLoS One. 6:e192092011.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Zheng Y, Li S, Boohaker RJ, Liu X, Zhu Y,
Zhai L, Li H, Gu F, Fan Y, Lang R, et al: A MicroRNA expression
signature In Taxane-anthracycline-Based neoadjuvant chemotherapy
response. J Cancer. 6:671–677. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhou M, Liu Z, Zhao Y, Ding Y, Liu H, Xi
Y, Xiong W, Li G, Lu J, Fodstad O, et al: MicroRNA-125b confers the
resistance of breast cancer cells to paclitaxel through suppression
of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J
Biol Chem. 285:21496–21507. 2010. View Article : Google Scholar : PubMed/NCBI
|
46
|
Kim GC, Lee CG, Verma R, Rudra D, Kim T,
Kang K, Nam JH, Kim Y, Im SH and Kwon HK: ETS1 suppresses
tumorigenesis of human breast cancer via trans-activation of
canonical tumor suppressor genes. Front Oncol. 10:6422020.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Pogribny IP, Filkowski JN, Tryndyak VP,
Golubov A, Shpyleva SI and Kovalchuk O: Alterations of microRNAs
and their targets are associated with acquired resistance of MCF-7
breast cancer cells to cisplatin. Int J Cancer. 127:1785–1794.
2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Dai YC, Pan Y, Quan MM, Chen Q, Pan Y,
Ruan YY and Sun JG: MicroRNA-1246 mediates drug resistance and
metastasis in breast cancer by targeting NFE2L3. Front Oncol.
11:6771682021. View Article : Google Scholar : PubMed/NCBI
|
49
|
Li LP, Huang YC, Zhang Y, Peng A, Qin J,
Lu S and Huang Y: RTKN2 is associated with unfavorable prognosis
and promotes progression in non-small-cell lung cancer. Onco
Targets Ther. 13:10729–10738. 2020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Chen K, Ye C, Gao Z, Hu J, Chen C, Xiao R,
Lu F and Wei K: Immune infiltration patterns and identification of
new diagnostic biomarkers GDF10, NCKAP5, and RTKN2 in non-small
cell lung cancer. Transl Oncol. 29:1016182023. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zeng J, Li X, Liang L, Duan H, Xie S and
Wang C: Phosphorylation of CAP1 regulates lung cancer
proliferation, migration, and invasion. J Cancer Res Clin Oncol.
148:137–153. 2022. View Article : Google Scholar : PubMed/NCBI
|
52
|
Ye FG, Song CG, Cao ZG, Xia C, Chen DN,
Chen L, Li S, Qiao F, Ling H, Yao L, et al: Cytidine deaminase axis
modulated by miR-484 differentially regulates cell proliferation
and chemoresistance in breast cancer. Cancer Res. 75:1504–1515.
2015. View Article : Google Scholar : PubMed/NCBI
|
53
|
Jia YZ, Liu J, Wang GQ and Song ZF:
miR-484: A Potential Biomarker in Health and Disease. Front Oncol.
12:8304202022. View Article : Google Scholar : PubMed/NCBI
|
54
|
Tsang J, Zhu J and van Oudenaarden A:
MicroRNA-mediated feedback and feedforward loops are recurrent
network motifs in mammals. Mol Cell. 26:753–767. 2007. View Article : Google Scholar : PubMed/NCBI
|
55
|
Nersisyan S, Galatenko A, Galatenko V,
Shkurnikov M and Tonevitsky A: miRGTF-net: Integrative
miRNA-gene-TF network analysis reveals key drivers of breast cancer
recurrence. PLoS One. 16:2021. View Article : Google Scholar : PubMed/NCBI
|