p160 nuclear receptor coactivator family members and their role in rare fusion‑driven neoplasms (Review)
- Authors:
- Danilo Segovia
- Polona Safaric Tepes
-
Affiliations: Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA, Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY 11030, USA - Published online on: March 14, 2024 https://doi.org/10.3892/ol.2024.14343
- Article Number: 210
-
Copyright: © Segovia et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Mertens F, Johansson B, Fioretos T and Mitelman F: The emerging complexity of gene fusions in cancer. Nat Rev Cancer. 15:371–381. 2015. View Article : Google Scholar : PubMed/NCBI | |
Folpe AL, Graham RP, Martinez A, Schembri-Wismayer D, Boland J and Fritchie KJ: Mesenchymal chondrosarcomas showing immunohistochemical evidence of rhabdomyoblastic differentiation: A potential diagnostic pitfall. Hum Pathol. 77:28–34. 2018. View Article : Google Scholar : PubMed/NCBI | |
Latysheva NS and Babu MM: Discovering and understanding oncogenic gene fusions through data intensive computational approaches. Nucleic Acids Res. 44:4487–4503. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mitelman F, Johansson B and Mertens F: The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 7:233–245. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pugh TJ, Morozova O, Attiyeh EF, Asgharzadeh S, Wei JS, Auclair D, Carter SL, Cibulskis K, Hanna M, Kiezun A, et al: The genetic landscape of high-risk neuroblastoma. Nat Genet. 45:279–284. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lobato MN, Metzler M, Drynan L, Forster A, Pannell R and Rabbitts TH: Modeling chromosomal translocations using conditional alleles to recapitulate initiating events in human leukemias. J Natl Cancer Inst Monogr. 39:58–63. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cocco E, Scaltriti M and Drilon A: NTRK fusion-positive cancers and TRK inhibitor therapy. Nat Rev Clin Oncol. 15:731–747. 2018. View Article : Google Scholar : PubMed/NCBI | |
Frenkel-Morgenstern M and Valencia A: Novel domain combinations in proteins encoded by chimeric transcripts. Bioinformatics. 28:i67–i74. 2012. View Article : Google Scholar : PubMed/NCBI | |
Padmavathi G, Roy NK, Bordoloi D, Monisha J and Kunnumakkara AB: ‘Basic concepts of fusion genes and their classification’ in fusion genes and cancer. (World scientific, 2016), doi:10.1142/9789813200944_000210.1142/9789813200944_0002. 17–58 | |
Webb P, Nguyen P, Shinsako J, Anderson C, Feng W, Nguyen MP, Chen D, Huang SM, Subramanian S, McKinerney E, et al: Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol Endocrinol. 12:1605–1618. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kushner PJ, Agard D, Feng WJ, Lopez G, Schiau A, Uht R, Webb P and Greene G: Oestrogen receptor function at classical and alternative response elements. Novartis Found Symp. 230:20–26. 2000. View Article : Google Scholar : PubMed/NCBI | |
Rollins DA, Coppo M and Rogatsky I: Minireview: Nuclear receptor coregulators of the p160 family: Insights into inflammation and metabolism. Mol Endocrinol. 29:502–517. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yoshida H, Miyachi M, Sakamoto K, Ouchi K, Yagyu S, Kikuchi K, Kuwahara Y, Tsuchiya K, Imamura T, Iehara T, et al: PAX3-NCOA2 fusion gene has a dual role in promoting the proliferation and inhibiting the myogenic differentiation of rhabdomyosarcoma cells. Oncogene. 33:5601–5608. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yin H, Glass J and Blanchard KJ: MOZ-TIF2 repression of nuclear receptor-mediated transcription requires multiple domains in MOZ and in the CID domain of TIF2. Mol Cancer. 6:512007. View Article : Google Scholar : PubMed/NCBI | |
Goebel EA, Bonilla SH, Dong F, Dickson BC, Hoang LN, Hardisson D, Lacambra MD, Lu FI, Fletcher CDM, Crum CP, et al: Uterine tumor resembling ovarian sex cord tumor (UTROSCT): A morphologic and molecular study of 26 cases confirms recurrent NCOA1-3 rearrangement. Am J Surg Pathol. 44:30–42. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hagenbuchner J and Ausserlechner MJ: Targeting transcription factors by small compounds-current strategies and future implications. Biochem Pharmacol. 107:1–13. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu J and Li Q: Review of the in vivo functions of the p160 steroid receptor coactivator family. Mol Endocrinol. 17:1681–1692. 2003. View Article : Google Scholar : PubMed/NCBI | |
Xu J and O'Malley BW: Molecular mechanisms and cellular biology of the steroid receptor coactivator (SRC) family in steroid receptor function. Rev Endocr Metab Disord. 3:185–192. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hultqvist G, Åberg E, Camilloni C, Sundell GN, Andersson E, Dogan J, Chi CN, Vendruscolo M and Jemth P: Emergence and evolution of an interaction between intrinsically disordered proteins. Elife. 6:e160592017. View Article : Google Scholar : PubMed/NCBI | |
Heery DM, Kalkhoven E, Hoare S and Parker MG: A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature. 387:733–736. 1997. View Article : Google Scholar : PubMed/NCBI | |
Lodrini M, Münz T, Coudevylle N, Griesinger C, Becker S and Pfitzner E: P160/SRC/NCoA coactivators form complexes via specific interaction of their PAS-B domain with the CID/AD1 domain. Nucleic Acids Res. 36:1847–1860. 2008. View Article : Google Scholar : PubMed/NCBI | |
Szwarc MM, Kommagani R, Lessey BA and Lydon JP: The p160/steroid receptor coactivator family: Potent arbiters of uterine physiology and dysfunction. Biol Reprod. 91:1222014. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Yi X, Sun X, Yin N, Shi B, Wu H, Wang D, Wu G and Shang Y: Differential gene regulation by the SRC family of coactivators. Genes Dev. 18:1753–1765. 2004. View Article : Google Scholar : PubMed/NCBI | |
Litterst CM and Pfitzner E: Transcriptional activation by STAT6 requires the direct interaction with NCoA-1. J Biol Chem. 276:45713–45721. 2001. View Article : Google Scholar : PubMed/NCBI | |
Karlsson E, Lindberg A, Andersson E and Jemth P: High affinity between CREBBP/p300 and NCOA evolved in vertebrates. Protein Sci. 29:1687–1691. 2020. View Article : Google Scholar : PubMed/NCBI | |
Na SY, Lee SK, Han SJ, Choi HS, Im SY and Lee JW: Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear factor kappaB-mediated transactivations. J Biol Chem. 273:10831–10834. 1998. View Article : Google Scholar : PubMed/NCBI | |
Beischlag TV, Wang S, Rose DW, Torchia J, Reisz-Porszasz S, Muhammad K, Nelson WE, Probst MR, Rosenfeld MG and Hankinson O: Recruitment of the NCoA/SRC-1/p160 family of transcriptional coactivators by the aryl hydrocarbon receptor/aryl hydrocarbon receptor nuclear translocator complex. Mol Cell Biol. 22:4319–4333. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rohira AD and Lonard DM: Steroid receptor coactivators present a unique opportunity for drug development in hormone-dependent cancers. Biochem Pharmacol. 140:1–7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Koh SS, Chen D, Lee YH and Stallcup MR: Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J Biol Chem. 276:1089–1098. 2001. View Article : Google Scholar : PubMed/NCBI | |
Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA, McKenna NJ, Onate SA, Tsai SY, Tsai MJ and O'Malley BW: Steroid receptor coactivator-1 is a histone acetyltransferase. Nature. 389:194–198. 1997. View Article : Google Scholar : PubMed/NCBI | |
Drazic A, Myklebust LM, Ree R and Arnesen T: The world of protein acetylation. Biochim Biophys Acta. 1864:1372–1401. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ding XF, Anderson CM, Ma H, Hong H, Uht RM, Kushner PJ and Stallcup MR: Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): Multiple motifs with different binding specificities. Mol Endocrinol. 12:302–313. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kalkhoven E, Valentine JE, Heery DM and Parker MG: Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J. 17:232–243. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kumar MB and Perdew GH: Nuclear receptor coactivator SRC-1 interacts with the Q-rich subdomain of the AhR and modulates its transactivation potential. Gene Expr. 8:273–286. 1999.PubMed/NCBI | |
Bevan CL, Hoare S, Claessens F, Heery DM and Parker MG: The AF1 and AF2 domains of the androgen receptor interact with distinct regions of SRC1. Mol Cell Biol. 19:8383–8392. 1999. View Article : Google Scholar : PubMed/NCBI | |
Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, et al: AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50:D439–D444. 2022. View Article : Google Scholar : PubMed/NCBI | |
Razeto A, Ramakrishnan V, Litterst CM, Giller K, Griesinger C, Carlomagno T, Lakomek N, Heimburg T, Lodrini M, Pfitzner E and Becker S: Structure of the NCoA-1/SRC-1 PAS-B domain bound to the LXXLL motif of the STAT6 transactivation domain. J Mol Biol. 336:319–329. 2004. View Article : Google Scholar : PubMed/NCBI | |
Russo L, Giller K, Pfitzner E, Griesinger C and Becker S: Insight into the molecular recognition mechanism of the coactivator NCoA1 by STAT6. Sci Rep. 7:168452017. View Article : Google Scholar : PubMed/NCBI | |
Li S and Shang Y: Regulation of SRC family coactivators by post-translational modifications. Cell Signal. 19:1101–1112. 2007. View Article : Google Scholar : PubMed/NCBI | |
Han SJ, Lonard B and O'Malley W: Multi-modulation of nuclear receptor coactivators through posttranslational modifications. Trends Endocrinol Metab. 20:8–15. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rowan BG, Garrison N, Weigel NL and O'Malley BW: 8-Bromo-cyclic AMP induces phosphorylation of two sites in SRC-1 that facilitate ligand-independent activation of the chicken progesterone receptor and are critical for functional cooperation between SRC-1 and CREB binding protein. Mol Cell Biol. 20:8720–8730. 2000. View Article : Google Scholar : PubMed/NCBI | |
Narayanan R, Adigun AA, Edwards DP and Weigel NL: Cyclin-dependent kinase activity is required for progesterone receptor function: Novel role for cyclin A/Cdk2 as a progesterone receptor coactivator. Mol Cell Biol. 25:264–277. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ueda T, Mawji NR, Bruchovsky N and Sadar MD: Ligand-independent activation of the androgen receptor by interleukin-6 and the role of steroid receptor coactivator-1 in prostate cancer cells. J Biol Chem. 277:38087–38094. 2002. View Article : Google Scholar : PubMed/NCBI | |
Rowan BG, Weigel NL and O'Malley BW: Phosphorylation of steroid receptor coactivator-1: Identification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J Biol Chem. 275:4475–4483. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hoang T, Fenne IS, Cook C, Børud B, Bakke M, Lien EA and Mellgren G: cAMP-dependent protein kinase regulates ubiquitin-proteasome-mediated degradation and subcellular localization of the nuclear receptor coactivator GRIP1. J Biol Chem. 279:49120–49130. 2004. View Article : Google Scholar : PubMed/NCBI | |
Oh AS, Lahusen JT, Chien CD, Fereshteh MP, Zhang X, Dakshanamurthy S, Xu J, Kagan BL, Wellstein A and Riegel AT: Tyrosine phosphorylation of the nuclear receptor coactivator AIB1/SRC-3 is enhanced by Abl kinase and is required for its activity in cancer cells. Mol Cell Biol. 28:6580–6593. 2008. View Article : Google Scholar : PubMed/NCBI | |
Baumann CT, Ma H, Wolford R, Reyes JC, Maruvada P, Lim C, Yen PM, Stallcup MR and Hager GL: The glucocorticoid receptor interacting protein 1 (GRIP1) localizes in discrete nuclear foci that associate with ND10 bodies and are enriched in components of the 26S proteasome. Mol Endocrinol. 15:485–500. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chauchereau A, Amazit L, Quesne M, Guiochon-Mantel A and Milgrom E: Sumoylation of the progesterone receptor and of the steroid receptor coactivator SRC-1. J Biol Chem. 278:12335–12343. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kotaja N, Karvonen U, Jänne OA and Palvimo JJ: The nuclear receptor interaction domain of GRIP1 is modulated by covalent attachment of SUMO-1. J Biol Chem. 277:30283–30288. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Sun L, Zhang Y, Chen Y, Shi B, Li R, Wang Y, Liang J, Fan D, Wu G, et al: Coordinated regulation of AIB1 transcriptional activity by sumoylation and phosphorylation. J Biol Chem. 281:21848–21856. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Lin RJ, Xie W, Wilpitz D and Evans RM: Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell. 98:675–686. 1999. View Article : Google Scholar : PubMed/NCBI | |
Naeem H, Cheng D, Zhao Q, Underhill C, Tini M, Bedford MT and Torchia J: The activity and stability of the transcriptional coactivator p/CIP/SRC-3 are regulated by CARM1-dependent methylation. Mol Cell Biol. 27:120–134. 2007. View Article : Google Scholar : PubMed/NCBI | |
McKenna NJ and O'Malley BW: Combinatorial control of gene expression by nuclear receptors and coregulators. Cell. 108:465–474. 2002. View Article : Google Scholar : PubMed/NCBI | |
Voegel JJ, Heine MJ, Tini M, Vivat V, Chambon P and Gronemeyer H: The coactivator TIF2 contains three nuclear receptor-binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17:507–519. 1998. View Article : Google Scholar : PubMed/NCBI | |
Johnson AB and Barton MC: Hypoxia-induced and stress-specific changes in chromatin structure and function. Mutat Res. 618:149–162. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Motoi T, Khanin R, Olshen A, Mertens F, Bridge J, Cin PD, Antonescu CR, Singer S, Hameed M, et al: Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosomes Cancer. 51:127–139. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sumegi J, Streblow R, Frayer RW, Cin PD, Rosenberg A, Meloni-Ehrig A and Bridge JA: Recurrent t(2;2) and t(2;8) translocations in rhabdomyosarcoma without the canonical PAX-FOXO1 fuse PAX3 to members of the nuclear receptor transcriptional coactivator family. Genes Chromosomes Cancer. 49:224–236. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bekers EM, Groenen PJTA, Verdijk MAJ, Raaijmakers-van Geloof WL, Roepman P, Vink R, Gilhuijs NDB, van Gorp JM, Bovée JVMG, Creytens DH, et al: Soft tissue angiofibroma: Clinicopathologic, immunohistochemical and molecular analysis of 14 cases. Genes Chromosomes Cancer. 56:750–757. 2017. View Article : Google Scholar : PubMed/NCBI | |
Argani P, Reuter VE, Kapur P, Brown JE, Sung YS, Zhang L, Williamson R, Francis G, Sommerville S, Swanson D, et al: Novel MEIS1-NCOA2 gene fusions define a distinct primitive spindle cell sarcoma of the kidney. Am J Surg Pathol. 42:1562–1570. 2018. View Article : Google Scholar : PubMed/NCBI | |
Piscuoglio S, Burke KA, Ng CK, Papanastasiou AD, Geyer FC, Macedo GS, Martelotto LG, de Bruijn I, De Filippo MR, Schultheis AM, et al: Uterine adenosarcomas are mesenchymal neoplasms. J Pathol. 238:381–388. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dickson BC, Childs TJ, Colgan TJ, Sung YS, Swanson D, Zhang L and Antonescu CR: Uterine tumor resembling ovarian sex cord tumor: A distinct entity characterized by recurrent NCOA2/3 gene fusions. Am J Surg Pathol. 43:178–186. 2019. View Article : Google Scholar : PubMed/NCBI | |
Le Loarer F, Laffont S, Lesluyes T, Tirode F, Antonescu C, Baglin AC, Delespaul L, Soubeyran I, Hostein I, Pérot G, et al: Clinicopathologic and molecular features of a series of 41 biphenotypic sinonasal sarcomas expanding their molecular spectrum. Am J Surg Pathol. 43:747–754. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lacambra MD, Weinreb I, Demicco EG, Chow C, Sung YS, Swanson D, To KF, Wong KC, Antonescu CR and Dickson BC: PRRX-NCOA1/2 rearrangement characterizes a distinctive fibroblastic neoplasm. Genes Chromosomes Cancer. 58:705–712. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wachtel M, Dettling M, Koscielniak E, Stegmaier S, Treuner J, Simon-Klingenstein K, Bühlmann P, Niggli FK and Schäfer BW: Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer Res. 64:5539–5545. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bean GR, Anderson J, Sangoi AR, Krings G and Garg K: DICER1 mutations are frequent in mullerian adenosarcomas and are independent of rhabdomyosarcomatous differentiation. Mod Pathol. 32:280–289. 2019. View Article : Google Scholar : PubMed/NCBI | |
El Beaino M, Roszik J, Livingston JA, Wang WL, Lazar AJ, Amini B, Subbiah V, Lewis V and Conley AP: Mesenchymal chondrosarcoma: A review with emphasis on its fusion-driven biology. Curr Oncol Rep. 20:372018. View Article : Google Scholar : PubMed/NCBI | |
Schneiderman BA, Kliethermes SA and Nystrom LM: Survival in mesenchymal chondrosarcoma varies based on age and tumor location: A survival analysis of the SEER database. Clin Orthop Relat Res. 475:799–805. 2017. View Article : Google Scholar : PubMed/NCBI | |
Brown RE and Boyle JL: Mesenchymal chondrosarcoma: Molecular characterization by a proteomic approach, with morphogenic and therapeutic implications. Ann Clin Lab Sci. 33:131–141. 2003.PubMed/NCBI | |
Fischer A and Gessler M: Delta-Notch-and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res. 35:4583–4596. 2007. View Article : Google Scholar : PubMed/NCBI | |
Swanson PE, Lillemoe TJ, Manivel JC and Wick MR: Mesenchymal chondrosarcoma. An immunohistochemical study. Arch Pathol Lab Med. 114:943–948. 1990.PubMed/NCBI | |
Qi W, Rosikiewicz W, Yin Z, Xu B, Jiang H, Wan S, Fan Y, Wu G and Wang L: Genomic profiling identifies genes and pathways dysregulated by HEY1-NCOA2 fusion and shines a light on mesenchymal chondrosarcoma tumorigenesis. J Pathol. 257:579–592. 2022. View Article : Google Scholar : PubMed/NCBI | |
Tepes PS, Segovia D, Jevtic S, Ramirez D, Lyons SK and Sordella R: Patient-derived xenografts and in vitro model show rationale for imatinib mesylate repurposing in HEY1-NCoA2-driven mesenchymal chondrosarcoma. Lab Invest. 102:1038–1049. 2021. View Article : Google Scholar | |
de Jong Y, van Maldegem AM, Marino-Enriquez A, de Jong D, Suijker J, Briaire-de Bruijn IH, Kruisselbrink AB, Cleton-Jansen AM, Szuhai K, Gelderblom H, et al: Inhibition of Bcl-2 family members sensitizes mesenchymal chondrosarcoma to conventional chemotherapy: Report on a novel mesenchymal chondrosarcoma cell line. Lab Invest. 96:1128–1137. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tanaka M, Homme M, Teramura Y, Kumegawa K, Yamazaki Y, Yamashita K, Osato M, Maruyama R and Nakamura T: HEY1-NCOA2 expression modulates chondrogenic differentiation and induces mesenchymal chondrosarcoma in mice. JCI Insight. 8:e1602792023. View Article : Google Scholar : PubMed/NCBI | |
Nakayama S, Nishio J, Aoki M, Koga K, Nabeshima K and Yamamoto T: Angiofibroma of soft tissue: Current status of pathology and genetics. Histol Histopathol. 37:717–722. 2022.PubMed/NCBI | |
Sugita S, Aoyama T, Kondo K, Keira Y, Ogino J, Nakanishi K, Kaya M, Emori M, Tsukahara T and Nakajima H: Diagnostic utility of NCOA2 fluorescence in situ hybridization and Stat6 immunohistochemistry staining for soft tissue angiofibroma and morphologically similar fibrovascular tumors. Hum Pathol. 45:1588–1596. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Möller E, Nord KH, Mandahl N, Von Steyern FV, Domanski HA, Mariño-Enríquez A, Magnusson L, Nilsson J, Sciot R, et al: Fusion of the AHRR and NCOA2 genes through a recurrent translocation t(5;8)(p15;q13) in soft tissue angiofibroma results in upregulation of aryl hydrocarbon receptor target genes. Genes Chromosomes Cancer. 51:510–520. 2012. View Article : Google Scholar : PubMed/NCBI | |
Uemura K, Komatsu M, Hara S, Kawamoto T, Bitoh Y, Itoh T and Hirose T: CYP1A1 is a useful diagnostic marker for angiofibroma of soft tissue. Am J Surg Pathol. 47:547–557. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yamashita K, Baba S, Togashi Y, Dobashi A, Ae K, Matsumoto S, Tanaka M, Nakamura T and Takeuchi K: Clinicopathologic and genetic characterization of angiofibroma of soft tissue: A study of 12 cases including two cases with AHRR::NCOA3 gene fusion. Histopathology. 83:57–66. 2023. View Article : Google Scholar : PubMed/NCBI | |
Deguchi K, Ayton PM, Carapeti M, Kutok JL, Snyder CS, Williams IR, Cross NC, Glass CK, Cleary ML and Gilliland DG: MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding motif and TIF2-mediated recruitment of CBP. Cancer Cell. 3:259–271. 2003. View Article : Google Scholar : PubMed/NCBI | |
Carapeti M, Aguiar RC, Goldman JM and Cross NC: A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood. 91:3127–3133. 1998. View Article : Google Scholar : PubMed/NCBI | |
Huntly BJ, Shigematsu H, Deguchi K, Lee BH, Mizuno S, Duclos N, Rowan R, Amaral S, Curley D, Williams IR, et al: MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell. 6:587–596. 2004. View Article : Google Scholar : PubMed/NCBI | |
Largeot A, Perez-Campo FM, Marinopoulou E, Lie-a-Ling M, Kouskoff V and Lacaud G: Expression of the MOZ-TIF2 oncoprotein in mice represses senescence. Exp Hematol. 44:231–237.e234. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shima H, Yamagata K, Aikawa Y, Shino M, Koseki H, Shimada H and Kitabayashi I: Bromodomain-PHD finger protein 1 is critical for leukemogenesis associated with MOZ-TIF2 fusion. Int J Hematol. 99:21–31. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tam WF, Hähnel PS, Schüler A, Lee BH, Okabe R, Zhu N, Pante SV, Raffel G, Mercher T, Wernig G, et al: STAT5 is crucial to maintain leukemic stem cells in acute myelogenous leukemias induced by MOZ-TIF2. Cancer Res. 73:373–384. 2013. View Article : Google Scholar : PubMed/NCBI | |
Aikawa Y, Katsumoto T, Zhang P, Shima H, Shino M, Terui K, Ito E, Ohno H, Stanley ER, Singh H, et al: PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell potential induced by MOZ-TIF2. Nat Med. 16:580–585. 2010. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto R, Okuda H, Kanai A, Takahashi S, Kawamura T, Matsui H, Kitamura T, Kitabayashi I, Inaba T and Yokoyama A: Activation of CpG-rich promoters mediated by MLL drives MOZ-rearranged leukemia. Cell Rep. 32:1082002020. View Article : Google Scholar : PubMed/NCBI | |
Shima H, Takamatsu-Ichihara E, Shino M, Yamagata K, Katsumoto T, Aikawa Y, Fujita S, Koseki H and Kitabayashi I: Ring1A and Ring1B inhibit expression of Glis2 to maintain murine MOZ-TIF2 AML stem cells. Blood. 131:1833–1845. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cheung N, Fung TK, Zeisig BB, Holmes K, Rane JK, Mowen KA, Finn MG, Lenhard B, Chan LC and So CW: Targeting aberrant epigenetic networks mediated by PRMT1 and KDM4C in acute myeloid leukemia. Cancer Cell. 29:32–48. 2016. View Article : Google Scholar : PubMed/NCBI | |
Skapek SX, Ferrari A, Gupta AA, Lupo PJ, Butler E, Shipley J, Barr FG and Hawkins DS: Rhabdomyosarcoma. Nat Rev Dis Primers. 5:12019. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Guo W, Shen JK, Mankin HJ, Hornicek FJ and Duan Z: Rhabdomyosarcoma: Advances in molecular and cellular biology. Sarcoma. 2015:2320102015. View Article : Google Scholar : PubMed/NCBI | |
Alaggio R, Zhang L, Sung YS, Huang SC, Chen CL, Bisogno G, Zin A, Agaram NP, LaQuaglia MP, Wexler LH and Antonescu CR: A molecular study of pediatric spindle and sclerosing rhabdomyosarcoma: Identification of novel and recurrent VGLL2-related fusions in infantile cases. Am J Surg Pathol. 40:224–235. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mosquera JM, Sboner A, Zhang L, Kitabayashi N, Chen CL, Sung YS, Wexler LH, LaQuaglia MP, Edelman M, Sreekantaiah C, et al: Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer. 52:538–550. 2013. View Article : Google Scholar : PubMed/NCBI | |
Whittle S, Venkatramani R, Schönstein A, Pack SD, Alaggio R, Vokuhl C, Rudzinski ER, Wulf AL, Zin A, Gruver JR, et al: Congenital spindle cell rhabdomyosarcoma: An international cooperative analysis. Eur J Cancer. 168:56–64. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jia M, Sun PL and Gao H: Uterine lesions with sex cord-like architectures: A systematic review. Diagn Pathol. 14:1292019. View Article : Google Scholar : PubMed/NCBI | |
Schraag SM, Caduff R, Dedes KJ, Fink D and Schmidt AM: Uterine tumors resembling ovarian sex cord tumors-treatment, recurrence, pregnancy and brief review. Gynecol Oncol Rep. 19:53–56. 2017. View Article : Google Scholar : PubMed/NCBI | |
Clement PB and Scully RE: Mullerian adenosarcomas of the uterus with sex cord-like elements. A clinicopathologic analysis of eight cases. Am J Clin Pathol. 91:664–672. 1989. View Article : Google Scholar : PubMed/NCBI | |
McCluggage WG, Date A, Bharucha H and Toner PG: Endometrial stromal sarcoma with sex cord-like areas and focal rhabdoid differentiation. Histopathology. 29:369–374. 1996. View Article : Google Scholar : PubMed/NCBI | |
Boyraz B, Watkins JC, Young RH and Oliva E: Uterine tumors resembling ovarian sex cord tumors: A clinicopathologic study of 75 cases emphasizing features predicting adverse outcome and differential diagnosis. Am J Surg Pathol. 47:234–247. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lee CH, Kao YC, Lee WR, Hsiao YW, Lu TP, Chu CY, Lin YJ, Huang HY, Hsieh TH, Liu YR, et al: Clinicopathologic characterization of GREB1-rearranged uterine sarcomas with variable sex-cord differentiation. Am J Surg Pathol. 43:928–942. 2019. View Article : Google Scholar : PubMed/NCBI | |
Devereaux KA, Kertowidjojo E, Natale K, Ewalt MD, Soslow RA and Hodgson A: GTF2A1-NCOA2-associated uterine tumor resembling ovarian sex cord tumor (UTROSCT) shows focal rhabdoid morphology and aggressive behavior. Am J Surg Pathol. 45:1725–1728. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bi R, Yao Q, Ji G, Bai Q, Li A, Liu Z, Cheng Y, Tu X, Yu L, Chang B, et al: Uterine tumor resembling ovarian sex cord tumors: 23 Cases indicating molecular heterogeneity with variable biological behavior. Am J Surg Pathol. 47:739–755. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lu B, Xia Y, Chen J, Tang J, Shao Y and Yu W: NCOA1/2/3 rearrangements in uterine tumor resembling ovarian sex cord tumor: A clinicopathological and molecular study of 18 cases. Hum Pathol. 135:65–75. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xiong SP, Luo RZ, Wang F, Yang X, Lai JP, Zhang C and Liu LL: PD-L1 expression, morphology, and molecular characteristic of a subset of aggressive uterine tumor resembling ovarian sex cord tumor and a literature review. J Ovarian Res. 16:1022023. View Article : Google Scholar : PubMed/NCBI | |
Bernasconi M, Remppis A, Fredericks WJ, Rauscher FJ III and Schafer BW: Induction of apoptosis in rhabdomyosarcoma cells through down-regulation of PAX proteins. Proc Natl Acad Sci USA. 93:13164–13169. 1996. View Article : Google Scholar : PubMed/NCBI | |
Oh AS, Lahusen JT, Chien CD, Fereshteh MP, Zhang X, Dakshanamurthy S, Xu J, Kagan BL, Wellstein A and Riegel AT: Tyrosine phosphorylation of the nuclear receptor coactivator AIB1/SRC-3 is enhanced by Abl kinase and is required for its activity in cancer cells. Mol Cell Biol. 28:6580–6593. 2008. View Article : Google Scholar : PubMed/NCBI | |
Crooke ST, Liang XH, Baker BF and Crooke RM: Antisense technology: A review. J Biol Chem. 296:1004162021. View Article : Google Scholar : PubMed/NCBI | |
Quemener AM, Bachelot L, Forestier A, Donnou-Fournet E, Gilot D and Galibert MD: The powerful world of antisense oligonucleotides: From bench to bedside. Wiley Interdiscip Rev RNA. 11:e15942020. View Article : Google Scholar : PubMed/NCBI | |
Katti A, Diaz BJ, Caragine CM, Sanjana NE and Dow LE: CRISPR in cancer biology and therapy. Nat Rev Cancer. 22:259–279. 2022. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Lage M, Puig-Serra P, Menendez P, Torres-Ruiz R and Rodriguez-Perales S: CRISPR/Cas9 for cancer therapy: Hopes and challenges. Biomedicines. 6:1052018. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Lage M, Torres-Ruiz R, Puig-Serra P, Moreno-Gaona P, Martin MC, Moya FJ, Quintana-Bustamante O, Garcia-Silva S, Carcaboso AM, Petazzi P, et al: In vivo CRISPR/Cas9 targeting of fusion oncogenes for selective elimination of cancer cells. Nat Commun. 11:50602020. View Article : Google Scholar : PubMed/NCBI | |
Chen ZH, Yu YP, Zuo ZH, Nelson JB, Michalopoulos GK, Monga S, Liu S, Tseng G and Luo JH: Targeting genomic rearrangements in tumor cells through Cas9-mediated insertion of a suicide gene. Nat Biotechnol. 35:543–550. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Gao H, Yang Y, He M, Wu Y, Song Y, Tong Y and Rao Y: PROTACs: Great opportunities for academia and industry. Signal Transduct Target Ther. 4:642019. View Article : Google Scholar : PubMed/NCBI | |
Bekes M, Langley DR and Crews CM: PROTAC targeted protein degraders: The past is prologue. Nat Rev Drug Discov. 21:181–200. 2022. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Heo J, Jeong H, Hong KT, Kwon DH, Shin MH, Oh M, Sable GA, Ahn GO, Lee JS, et al: Targeted degradation of transcription coactivator SRC-1 through the N-degron pathway. Angew Chem Int Ed Engl. 59:17548–17555. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tan GZL, Saminathan SN, Chang KTE, Odoño EG, Kuick CH, Chen H and Lee VKM: A rare case of congenital spindle cell rhabdomyosarcoma with TEAD1-NCOA2 fusion: A subset of spindle cell rhabdomyosarcoma with indolent behavior. Pathol Int. 70:234–236. 2020. View Article : Google Scholar : PubMed/NCBI | |
Avenarius MR, Miller CR, Arnold MA, Koo S, Roberts R, Hobby M, Grossman T, Moyer Y, Wilson RK, Mardis ER, et al: Genetic characterization of pediatric sarcomas by targeted RNA sequencing. J Mol Diagn. 22:1238–1245. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bennett JA, Lastra RR, Barroeta JE, Parilla M, Galbo F, Wanjari P, Young RH, Krausz T and Oliva E: Uterine tumor resembling ovarian sex cord stromal tumor (UTROSCT): A series of 3 cases with extensive rhabdoid differentiation, malignant behavior, and ESR1-NCOA2 fusions. Am J Surg Pathol. 44:1563–1572. 2020. View Article : Google Scholar : PubMed/NCBI | |
Panagopoulos I, Gorunova L, Viset T and Heim S and Heim S: Gene fusions AHRR-NCOA2, NCOA2-ETV4, ETV4-AHRR, P4HA2-TBCK, and TBCK-P4HA2 resulting from the translocations t(5;8;17)(p15;q13;q21) and t(4;5)(q24;q31) in a soft tissue angiofibroma. Oncol Rep. 36:2455–2462. 2016. View Article : Google Scholar : PubMed/NCBI | |
Teramura Y, Tanaka M, Yamazaki Y, Yamashita K, Takazawa Y, Ae K, Matsumoto S, Nakayama T, Kaneko T, Musha Y and Nakamura T: Identification of novel fusion genes in bone and soft tissue sarcoma and their implication in the generation of a mouse model. Cancers (Basel). 12:23452020. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Gao L, Jing Y, Xu YY, Ding Y, Wang N, Wang W, Li MY, Han XP, Sun JZ, et al: Detection of ETV6 gene rearrangements in adult acute lymphoblastic leukemia. Ann Hematol. 91:1235–1243. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhuravleva J, Paggetti J, Martin L, Hammann A, Solary E, Bastie JN and Delva L: MYST3/NCOA2-induced acute myeloid leukemia in transgenic fish. Blood. 112:53292008. View Article : Google Scholar | |
Esteyries S, Perot C, Adelaide J, Imbert M, Lagarde A, Pautas C, Olschwang S, Birnbaum D, Chaffanet M and Mozziconacci MJ: NCOA3, a new fusion partner for MOZ/MYST3 in M5 acute myeloid leukemia. Leukemia. 22:663–665. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chang B, Bai Q, Liang L, Ge H and Yao Q: Recurrent uterine tumors resembling ovarian sex-cord tumors with the growth regulation by estrogen in breast cancer 1-nuclear receptor coactivator 2 fusion gene: A case report and literature review. Diagn Pathol. 15:1102020. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Wu WK, Liang Q, Zhang N, He J, Li X, Zhang X, Xu L, Chan MT, Ng SS and Sung JJ: Disruption of NCOA2 by recurrent fusion with LACTB2 in colorectal cancer. Oncogene. 35:187–195. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cao Q, Liu Z, Huang Y, Qi C and Yin X: NCOA1-ALK: A novel ALK rearrangement in one lung adenocarcinoma patient responding to crizotinib treatment. Onco Targets Ther. 12:1071–1074. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yoshihara K, Wang Q, Torres-Garcia W, Zheng S, Vegesna R, Kim H and Verhaak RG: The landscape and therapeutic relevance of cancer-associated transcript fusions. Oncogene. 34:4845–4854. 2015. View Article : Google Scholar : PubMed/NCBI | |
Robinson DR, Kalyana-Sundaram S, Wu YM, Shankar S, Cao X, Ateeq B, Asangani IA, Iyer M, Maher CA, Grasso CS, et al: Functionally recurrent rearrangements of the MAST kinase and Notch gene families in breast cancer. Nat Med. 17:1646–1651. 2011. View Article : Google Scholar : PubMed/NCBI |