The numerous facets of 1q21+ in multiple myeloma: Pathogenesis, clinicopathological features, prognosis and clinical progress (Review)
- Authors:
- Na Liu
- Zhanzhi Xie
- Hao Li
- Luqun Wang
-
Affiliations: Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China, Sanofi China Investment Co., Ltd. Shanghai Branch, Shanghai 200000, P.R. China - Published online on: April 9, 2024 https://doi.org/10.3892/ol.2024.14391
- Article Number: 258
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
van de Donk NWCJ, Pawlyn C and Yong KL: Multiple myeloma. Lancet. 397:410–427. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pop VS, Tomoaia G and Parvu A: Modern imaging techniques for monitoring patients with multiple myeloma. Med Pharm Rep. 95:377–384. 2022.PubMed/NCBI | |
Huang J, Chan SC, Lok V, Zhang L, Lucero-Prisno DE III, Xu W, Zheng ZJ, Elcarte E, Withers M, Wong MCS, et al: The epidemiological landscape of multiple myeloma: A global cancer registry estimate of disease burden, risk factors, and temporal trends. Lancet Haematol. 9:e670–e677. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rajkumar SV: Multiple myeloma: 2022 Update on diagnosis, risk stratification, and management. Am J Hematol. 97:1086–1107. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hemminki K, Försti A, Houlston R and Sud A: Epidemiology, genetics and treatment of multiple myeloma and precursor diseases. Int J Cancer. 149:1980–1996. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dutta AK, Alberge JB, Sklavenitis-Pistofidis R, Lightbody ED, Getz G and Ghobrial IM: Single-cell profiling of tumour evolution in multiple myeloma-opportunities for precision medicine. Nat Rev Clin Oncol. 19:223–236. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, Dawson KJ, Iorio F, Nik-Zainal S, Bignell GR, et al: Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 5:29972014. View Article : Google Scholar : PubMed/NCBI | |
Rajkumar SV: Updated diagnostic criteria and staging system for multiple myeloma. Am Soc Clin Oncol Educ Book. 35:e418–e423. 2016. View Article : Google Scholar : PubMed/NCBI | |
Perrot A, Lauwers-Cances V, Tournay E, Hulin C, Chretien ML, Royer B, Dib M, Decaux O, Jaccard A, Belhadj K, et al: Development and validation of a cytogenetic prognostic index predicting survival in multiple myeloma. J Clin Oncol. 37:1657–1665. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hanamura I: Multiple myeloma with high-risk cytogenetics and its treatment approach. Int J Hematol. 115:762–777. 2022. View Article : Google Scholar : PubMed/NCBI | |
Caro J, Al Hadidi S, Usmani S, Yee AJ, Raje N and Davies FE: How to treat high-risk myeloma at diagnosis and relapse. Am Soc Clin Oncol Educ Book. 41:291–309. 2021. View Article : Google Scholar : PubMed/NCBI | |
Neuse CJ, Lomas OC, Schliemann C, Shen YJ, Manier S, Bustoros M and Ghobrial IM: Genome instability in multiple myeloma. Leukemia. 34:2887–2897. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schmidt TM, Fonseca R and Usmani SZ: Chromosome 1q21 abnormalities in multiple myeloma. Blood Cancer J. 11:832021. View Article : Google Scholar : PubMed/NCBI | |
Hanamura I, Stewart JP, Huang Y, Zhan F, Santra M, Sawyer JR, Hollmig K, Zangarri M, Pineda-Roman M, van Rhee F, et al: Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: Incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation. Blood. 108:1724–1732. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ross FM, Avet-Loiseau H, Ameye G, Gutiérrez NC, Liebisch P, O'Connor S, Dalva K, Fabris S, Testi AM, Jarosova M, et al: Report from the European myeloma network on interphase FISH in multiple myeloma and related disorders. Haematologica. 97:1272–1277. 2012. View Article : Google Scholar : PubMed/NCBI | |
Burroughs Garcìa J, Eufemiese RA, Storti P, Sammarelli G, Craviotto L, Todaro G, Toscani D, Marchica V and Giuliani N: Role of 1q21 in multiple myeloma: From pathogenesis to possible therapeutic targets. Cells. 10:13602021. View Article : Google Scholar : PubMed/NCBI | |
Bisht K, Walker B, Kumar SK, Spicka I, Moreau P, Martin T, Costa LJ, Richter J, Fukao T, Macé S and van de Velde H: Chromosomal 1q21 abnormalities in multiple myeloma: A review of translational, clinical research, and therapeutic strategies. Expert Rev Hematol. 14:1099–1114. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kastritis E, Migkou M, Dalampira D, Gavriatopoulou M, Fotiou D, Roussou M, Kanellias N, Ntanasis-Stathopoulos I, Malandrakis P, Theodorakakou F, et al: Chromosome 1q21 aberrations identify ultra high-risk myeloma with prognostic and clinical implications. Am J Hematol. 97:1142–1149. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li X, Chen W, Wu Y, Li J, Chen L, Fang B, Feng Y, Liu J, Chen M, Gu J, et al: 1q21 gain combined with high-risk factors is a heterogeneous prognostic factor in newly diagnosed multiple myeloma: A multicenter study in China. Oncologist. 24:e1132–e1140. 2019. View Article : Google Scholar : PubMed/NCBI | |
Garifullin A, Voloshin S, Shuvaev V, Martynkevich I, Kleina E, Chechetkin A, Bessmeltcev S, Kuzyaeva A, Sсhmidt A, Kuvshinov A and Pavlova I: Significance of modified risk stratification msmart 3.0 and autologous stem cell transplantation for patients with newly diagnosed multiple myeloma. Blood. 134 (Suppl 1):S55932019. View Article : Google Scholar | |
Abdallah NH, Binder M, Rajkumar SV, Greipp PT, Kapoor P, Dispenzieri A, Gertz MA, Baughn LB, Lacy MQ, Hayman SR, et al: A simple additive staging system for newly diagnosed multiple myeloma. Blood Cancer J. 12:212022. View Article : Google Scholar : PubMed/NCBI | |
D'Agostino M, Cairns DA, Lahuerta JJ, Wester R, Bertsch U, Waage A, Zamagni E, Mateos MV, Dall'Olio D, van de Donk NWCJ, et al: Second revision of the international staging system (R2-ISS) for overall survival in multiple myeloma: A European myeloma network (EMN) report within the HARMONY project. J Clin Oncol. 40:3406–3418. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pasvolsky O, Milton DR, Rauf M, Tanner MR, Bashir Q, Srour S, Tang G, Saini N, Ramdial J, Masood A, et al: Lenalidomide-based maintenance after autologous hematopoietic stem cell transplantation for patients with high-risk multiple myeloma. Transplant Cell Ther. 28:752.e1–752.e6. 2022. View Article : Google Scholar : PubMed/NCBI | |
Villalba A, Gonzalez-Rodriguez AP, Arzuaga-Mendez J, Puig N, Arnao M, Arguiñano JM, Jimenez M, Canet M, Teruel AI, Sola M, et al: Single versus tandem autologous stem-cell transplantation in patients with newly diagnosed multiple myeloma and high-risk cytogenetics. A retrospective, open-label study of the PETHEMA/Spanish myeloma group (GEM). Leuk Lymphoma. 63:3438–3447. 2022. View Article : Google Scholar : PubMed/NCBI | |
Barbieri E, Maccaferri M, Leonardi G, Giacobbi F, Corradini G, Lagreca I, Barozzi P, Potenza L, Marasca R and Luppi M: Adverse outcome associated with daratumumab-based treatments in relapsed/refractory multiple myeloma patients with amplification of chromosome arm 1q21: A single-center retrospective experience. Ann Hematol. 101:2777–2779. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Li Z, Li S, Fu W and Li R: Prognostic value and efficacy evaluation of novel drugs for multiple myeloma patients with 1q21 amplification (Amp1q21) only: A systematic review of randomized controlled trials. J Cancer. 11:2639–2644. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang YT, Bao L, Chu B, Chen XH, Lu MQ, Shi L, Gao S, Fang LJ, Xiang QQ and Ding YH: Amp 1q21 is more predictable with dismal survival than gain 1q21 of newly diagnosed multiple myeloma in real-world analysis. J Clin Lab Anal. 36:e243752022. View Article : Google Scholar : PubMed/NCBI | |
You H, Jin S, Wu C, Wang Q, Yan S, Yao W, Shi X, Shang J, Yan L, Yao Y, et al: The independent adverse prognostic significance of 1q21 gain/amplification in newly diagnosed multiple myeloma patients. Front Oncol. 12:9383922022. View Article : Google Scholar : PubMed/NCBI | |
Manier S, Salem KZ, Park J, Landau DA, Getz G and Ghobrial IM: Genomic complexity of multiple myeloma and its clinical implications. Nat Rev Clin Oncol. 14:100–113. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pawlyn C and Morgan GJ: Evolutionary biology of high-risk multiple myeloma. Nat Rev Cancer. 17:543–556. 2017. View Article : Google Scholar : PubMed/NCBI | |
Sawyer JR, Tricot G, Lukacs JL, Binz RL, Tian E, Barlogie B and Shaughnessy J Jr: Genomic instability in multiple myeloma: Evidence for jumping segmental duplications of chromosome arm 1q. Genes Chromosomes Cancer. 42:95–106. 2005. View Article : Google Scholar : PubMed/NCBI | |
Walker BA, Wardell CP, Murison A, Boyle EM, Begum DB, Dahir NM, Proszek PZ, Melchor L, Pawlyn C, Kaiser MF, et al: APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun. 6:69972015. View Article : Google Scholar : PubMed/NCBI | |
Saxe D, Seo EJ, Bergeron MB and Han JY: Recent advances in cytogenetic characterization of multiple myeloma. Int J Lab Hematol. 41:5–14. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sawyer JR, Tian E, Heuck CJ, Epstein J, Johann DJ, Swanson CM, Lukacs JL, Johnson M, Binz R, Boast A, et al: Jumping translocations of 1q12 in multiple myeloma: A novel mechanism for deletion of 17p in cytogenetically defined high-risk disease. Blood. 123:2504–2512. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sawyer JR, Tricot G, Mattox S, Jagannath S and Barlogie B: Jumping translocations of chromosome 1q in multiple myeloma: Evidence for a mechanism involving decondensation of pericentromeric heterochromatin. Blood. 91:1732–1741. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sawyer JR, Tian E, Walker BA, Wardell C, Lukacs JL, Sammartino G, Bailey C, Schinke CD, Thanendrarajan S, Davies FE, et al: An acquired high-risk chromosome instability phenotype in multiple myeloma: Jumping 1q syndrome. Blood Cancer J. 9:622019. View Article : Google Scholar : PubMed/NCBI | |
Bergsagel PL, Kuehl WM, Zhan F, Sawyer J, Barlogie B and Shaughnessy J Jr: Cyclin D dysregulation: An early and unifying pathogenic event in multiple myeloma. Blood. 106:296–303. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hose D, Rème T, Hielscher T, Moreaux J, Messner T, Seckinger A, Benner A, Shaughnessy JD Jr, Barlogie B, Zhou Y, et al: Proliferation is a central independent prognostic factor and target for personalized and risk-adapted treatment in multiple myeloma. Haematologica. 96:87–95. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shaughnessy J: Amplification and overexpression of CKS1B at chromosome band 1q21 is associated with reduced levels of p27Kip1 and an aggressive clinical course in multiple myeloma. Hematology. 10 (Suppl 1):S117–S126. 2005. View Article : Google Scholar | |
Ziccheddu B, Da Vià MC, Lionetti M, Maeda A, Morlupi S, Dugo M, Todoerti K, Oliva S, D'Agostino M, Corradini P, et al: Functional impact of genomic complexity on the transcriptome of multiple myeloma. Clin Cancer Res. 27:6479–6490. 2021. View Article : Google Scholar : PubMed/NCBI | |
Barillé S, Bataille R and Amiot M: The role of interleukin-6 and interleukin-6/interleukin-6 receptor-alpha complex in the pathogenesis of multiple myeloma. Eur Cytokine Netw. 11:546–551. 2000.PubMed/NCBI | |
Teoh PJ, Chung TH, Chng PYZ, Toh SHM and Chng WJ: IL6R-STAT3-ADAR1 (P150) interplay promotes oncogenicity in multiple myeloma with 1q21 amplification. Haematologica. 105:1391–1404. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gadó K, Domján G, Hegyesi H and Falus A: Role of interleukin-6 in the pathogenesis of multiple myeloma. Cell Biol Int. 24:195–209. 2000. View Article : Google Scholar : PubMed/NCBI | |
Song Z, Ren D, Xu X and Wang Y: Molecular cross-talk of IL-6 in tumors and new progress in combined therapy. Thorac Cancer. 9:669–675. 2018. View Article : Google Scholar : PubMed/NCBI | |
Quintanilla-Martinez L, Kremer M, Specht K, Calzada-Wack J, Nathrath M, Schaich R, Höfler H and Fend F: Analysis of signal transducer and activator of transcription 3 (Stat 3) pathway in multiple myeloma: Stat 3 activation and cyclin D1 dysregulation are mutually exclusive events. Am J Pathol. 162:1449–1461. 2003. View Article : Google Scholar : PubMed/NCBI | |
Treon SP, Maimonis P, Bua D, Young G, Raje N, Mollick J, Chauhan D, Tai YT, Hideshima T, Shima Y, et al: Elevated soluble MUC1 levels and decreased anti-MUC1 antibody levels in patients with multiple myeloma. Blood. 96:3147–3153. 2000. View Article : Google Scholar : PubMed/NCBI | |
Inoue J, Otsuki T, Hirasawa A, Imoto I, Matsuo Y, Shimizu S, Taniwaki M and Inazawa J: Overexpression of PDZK1 within the 1q12-q22 amplicon is likely to be associated with drug-resistance phenotype in multiple myeloma. Am J Pathol. 165:71–81. 2004. View Article : Google Scholar : PubMed/NCBI | |
Legartova S, Krejci J, Harnicarova A, Hajek R, Kozubek S and Bartova E: Nuclear topography of the 1q21 genomic region and Mcl-1 protein levels associated with pathophysiology of multiple myeloma. Neoplasma. 56:404–413. 2009. View Article : Google Scholar : PubMed/NCBI | |
Slomp A, Moesbergen LM, Gong JN, Cuenca M, von dem Borne PA, Sonneveld P, Huang DCS, Minnema MC and Peperzak V: Multiple myeloma with 1q21 amplification is highly sensitive to MCL-1 targeting. Blood Adv. 3:4202–4214. 2019. View Article : Google Scholar : PubMed/NCBI | |
Walker BA, Leone PE, Chiecchio L, Dickens NJ, Jenner MW, Boyd KD, Johnson DC, Gonzalez D, Dagrada GP, Protheroe RK, et al: A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value. Blood. 116:e56–e65. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shaughnessy JD Jr, Qu P, Usmani S, Heuck CJ, Zhang Q, Zhou Y, Tian E, Hanamura I, van Rhee F, Anaissie E, et al: Pharmacogenomics of bortezomib test-dosing identifies hyperexpression of proteasome genes, especially PSMD4, as novel high-risk feature in myeloma treated with total therapy 3. Blood. 118:3512–3524. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Yang Y, Xia J, Wang H, Salama ME, Xiong W, Xu H, Shetty S, Chen T, Zeng Z, et al: NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell. 23:48–62. 2013. View Article : Google Scholar : PubMed/NCBI | |
Marchesini M, Ogoti Y, Fiorini E, Aktas Samur A, Nezi L, D'Anca M, Storti P, Samur MK, Ganan-Gomez I, Fulciniti MT, et al: ILF2 is a regulator of RNA splicing and DNA damage response in 1q21-amplified multiple myeloma. Cancer Cell. 32:88–100.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Yang T, Liu Y, Lu Y, Yang Y, Liu X, Liu X, Ye L, Sun Y, Wang X, et al: ARNT/HIF-1β links high-risk 1q21 gain and microenvironmental hypoxia to drug resistance and poor prognosis in multiple myeloma. Cancer Med. 7:3899–3911. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xiang J, Chen X, Chen M and Hou J: Increased expression of SETDB1 predicts poor prognosis in multiple myeloma. Biomed Res Int. 2022:33078732022. View Article : Google Scholar : PubMed/NCBI | |
Sawyer JR, Tian E, Heuck CJ, Johann DJ, Epstein J, Swanson CM, Lukacs JL, Binz RL, Johnson M, Sammartino G, et al: Evidence of an epigenetic origin for high-risk 1q21 copy number aberrations in multiple myeloma. Blood. 125:3756–3759. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chatonnet F, Pignarre A, Sérandour AA, Caron G, Avner S, Robert N, Kassambara A, Laurent A, Bizot M, Agirre X, et al: The hydroxymethylome of multiple myeloma identifies FAM72D as a 1q21 marker linked to proliferation. Haematologica. 105:774–783. 2020. View Article : Google Scholar : PubMed/NCBI | |
Trasanidis N, Katsarou A, Ponnusamy K, Shen YA, Kostopoulos IV, Bergonia B, Keren K, Reema P, Xiao X, Szydlo RM, et al: Systems medicine dissection of chr1q-amp reveals a novel PBX1-FOXM1 axis for targeted therapy in multiple myeloma. Blood. 139:1939–1953. 2022. View Article : Google Scholar : PubMed/NCBI | |
Reid KBM: Complement component C1q: Historical perspective of a functionally versatile, and structurally unusual, serum protein. Front Immunol. 9:7642018. View Article : Google Scholar : PubMed/NCBI | |
Peerschke EI and Ghebrehiwet B: cC1qR/CR and gC1qR/p33: Observations in cancer. Mol Immunol. 61:100–109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Sun Y, Jiang J, Xu Z, Li J, Xu T and Liu P: Globular C1q receptor (gC1qR/p32/HABP1) suppresses the tumor-inhibiting role of C1q and promotes tumor proliferation in 1q21-amplified multiple myeloma. Front Immunol. 11:12922020. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Zhou N, Shi H, Yu W, Wu L and Zhou F: Presentation and outcomes of patients with multiple myeloma harboring gain or amplification of 1q21 and receiving novel agent therapies: Results from a single-center study. Hematology. 28:21779792023. View Article : Google Scholar : PubMed/NCBI | |
Yang P, Chen H, Liang X, Xu W, Yu S, Huang W, Yi X, Guo Q, Tian M, Yue T, et al: Proposed risk-scoring model for estimating the prognostic impact of 1q gain in patients with newly diagnosed multiple myeloma. Am J Hematol. 98:251–263. 2023. View Article : Google Scholar : PubMed/NCBI | |
Avet-Loiseau H, Attal M, Moreau P, Charbonnel C, Garban F, Hulin C, Leyvraz S, Michallet M, Yakoub-Agha I, Garderet L, et al: Genetic abnormalities and survival in multiple myeloma: The experience of the Intergroupe Francophone du Myélome. Blood. 109:3489–3495. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wu KL, Beverloo B, Lokhorst HM, Segeren CM, van der Holt B, Steijaert MM, Westveer PH, Poddighe PJ, Verhoef GE, Sonneveld P, et al: Abnormalities of chromosome 1p/q are highly associated with chromosome 13/13q deletions and are an adverse prognostic factor for the outcome of high-dose chemotherapy in patients with multiple myeloma. Br J Haematol. 136:615–623. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bang SM, Kim YR, Cho HI, Chi HS, Seo EJ, Park CJ, Yoo SJ, Kim HC, Chun HG, Min HC, et al: Identification of 13q deletion, trisomy 1q, and IgH rearrangement as the most frequent chromosomal changes found in Korean patients with multiple myeloma. Cancer Genet Cytogenet. 168:124–132. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bock F, Lu G, Srour SA, Gaballa S, Lin HY, Baladandayuthapani V, Honhar M, Stich M, Shah ND, Bashir Q, et al: Outcome of patients with multiple myeloma and CKS1B gene amplification after autologous hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 22:2159–2164. 2016. View Article : Google Scholar : PubMed/NCBI | |
Weinhold N, Salwender HJ, Cairns DA, Raab MS, Waldron G, Blau IW, Bertsch U, Hielscher T, Morgan GJ, Jauch A, et al: Chromosome 1q21 abnormalities refine outcome prediction in patients with multiple myeloma-a meta-analysis of 2,596 trial patients. Haematologica. 106:2754–2758. 2021. View Article : Google Scholar : PubMed/NCBI | |
You H, Jin S, Wu C, Wang Q, Yan S, Zhai Y, Yao W, Shi X, Shang J, Yan L, et al: The independent adverse prognostic significance of 1q21 gain/amplification in newly diagnosed multiple myeloma patients. Blood. 140 (Suppl 1):S10056–S10057. 2022. View Article : Google Scholar | |
Kyle RA, Gertz MA, Witzig TE, Lust JA, Lacy MQ, Dispenzieri A, Fonseca R, Rajkumar SV, Offord JR, Larson DR, et al: Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 78:21–33. 2003. View Article : Google Scholar : PubMed/NCBI | |
Krhovska P, Pika T, Proskova J, Balcarkova J, Zapletalova J, Bacovsky J and Minarik J: Bone metabolism parameters and their relation to cytogenetics in multiple myeloma. Eur J Haematol. 109:75–82. 2022. View Article : Google Scholar : PubMed/NCBI | |
D'Oronzo S, Brown J and Coleman R: The role of biomarkers in the management of bone-homing malignancies. J Bone Oncol. 9:1–9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kowalska M, Druzd-Sitek A, Fuksiewicz M, Kotowicz B, Chechlinska M, Syczewska M, Walewski J and Kaminska J: Procollagen I amino-terminal propeptide as a potential marker for multiple myeloma. Clin Biochem. 43:604–608. 2010. View Article : Google Scholar : PubMed/NCBI | |
Croft J, Ellis S, Sherborne AL, Sharp K, Price A, Jenner MW, Drayson MT, Owen RG, Chown S, Lindsay J, et al: Copy number evolution and its relationship with patient outcome-an analysis of 178 matched presentation-relapse tumor pairs from the Myeloma XI trial. Leukemia. 35:2043–2053. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yan W, Fan H, Xu J, Liu J, Li L, Du C, Deng S, Sui W, Xu Y, Zou D, et al: Prognostic value of the second revision of the international staging system (R2-ISS) in a real-world cohort of patients with newly-diagnosed multiple myeloma. Chin Med J (Engl). 136:1744–1746. 2023. View Article : Google Scholar : PubMed/NCBI | |
Nemec P, Zemanova Z, Greslikova H, Michalova K, Filkova H, Tajtlova J, Kralova D, Kupska R, Smetana J, Krejci M, et al: Gain of 1q21 is an unfavorable genetic prognostic factor for multiple myeloma patients treated with high-dose chemotherapy. Biol Blood Marrow Transplant. 16:548–554. 2010. View Article : Google Scholar : PubMed/NCBI | |
Neben K, Lokhorst HM, Jauch A, Bertsch U, Hielscher T, van der Holt B, Salwender H, Blau IW, Weisel K, Pfreundschuh M, et al: Administration of bortezomib before and after autologous stem cell transplantation improves outcome in multiple myeloma patients with deletion 17p. Blood. 119:940–948. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nahi H, Våtsveen TK, Lund J, Heeg BM, Preiss B, Alici E, Møller MB, Wader KF, Møller HE, Grøseth LA, et al: Proteasome inhibitors and IMiDs can overcome some high-risk cytogenetics in multiple myeloma but not gain 1q21. Eur J Haematol. 96:46–54. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shah GL, Landau H, Londono D, Devlin SM, Kosuri S, Lesokhin AM, Lendvai N, Hassoun H, Chung DJ, Koehne G, et al: Gain of chromosome 1q portends worse prognosis in multiple myeloma despite novel agent-based induction regimens and autologous transplantation. Leuk Lymphoma. 58:1823–1831. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shah V, Sherborne AL, Walker BA, Johnson DC, Boyle EM, Ellis S, Begum DB, Proszek PZ, Jones JR, Pawlyn C, et al: Prediction of outcome in newly diagnosed myeloma: A meta-analysis of the molecular profiles of 1905 trial patients. Leukemia. 32:102–110. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen D, Zhou D, Xu J, Zhou R, Ouyang J and Chen B: Prognostic value of 1q21 gain in multiple myeloma. Clin Lymphoma Myeloma Leuk. 19:e159–e164. 2019. View Article : Google Scholar : PubMed/NCBI | |
Schmidt TM, Barwick BG, Joseph N, Heffner LT, Hofmeister CC, Bernal L, Dhodapkar MV, Gupta VA, Jaye DL, Wu J, et al: Gain of chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone. Blood Cancer J. 9:942019. View Article : Google Scholar : PubMed/NCBI | |
Walker BA, Mavrommatis K, Wardell CP, Ashby TC, Bauer M, Davies F, Rosenthal A, Wang H, Qu P, Hoering A, et al: A high-risk, double-hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia. 33:159–170. 2019. View Article : Google Scholar : PubMed/NCBI | |
Abdallah N, Greipp P, Kapoor P, Gertz MA, Dispenzieri A, Baughn LB, Lacy MQ, Hayman SR, Buadi FK, Dingli D, et al: Clinical characteristics and treatment outcomes of newly diagnosed multiple myeloma with chromosome 1q abnormalities. Blood Adv. 4:3509–3519. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao W, Jian Y, Du J, Li X, Zhou H, Zhang Z, Yang G, Wang G, Tian Y, Li Y, et al: Gain of 1q21 is an adverse prognostic factor for multiple myeloma patients treated by autologous stem cell transplantation: A multicenter study in China. Cancer Med. 9:7819–7829. 2020. View Article : Google Scholar : PubMed/NCBI | |
An G, Xu Y, Shi L, Shizhen Z, Deng S, Xie Z, Sui W, Zhan F and Qiu L: Chromosome 1q21 gains confer inferior outcomes in multiple myeloma treated with bortezomib but copy number variation and percentage of plasma cells involved have no additional prognostic value. Haematologica. 99:353–359. 2014. View Article : Google Scholar : PubMed/NCBI | |
Du C, Mao X, Xu Y, Yan Y, Yuan C, Du X, Liu J, Fan H, Wang Q, Sui W, et al: 1q21 gain but not t(4;14) indicates inferior outcomes in multiple myeloma treated with bortezomib. Leuk Lymphoma. 61:1201–1210. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Xu J, Xu B, Li P, Yang Y, Wang W, Xu T, Maihemaiti A, Lan T, Wang P, et al: The prognostic role of 1q21 gain/amplification in newly diagnosed multiple myeloma: The faster, the worse. Cancer. 129:1005–1016. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gao L, Liu Y, Li Y, Feng L, Wang Z, Wen L, Wang F, Huang X, Lu J and Lai Y: The importance of FISH signal cut-off value and copy number variation for 1q21 in newly diagnosed multiple myeloma: Is it underestimated? Clin Lymphoma Myeloma Leuk. 22:535–544. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Jia S, Chu Y, Tian B, Gao Y, Zhang C, Zheng Y, Jia W, Liu X, Yuan R, et al: Chromosome 1q21 gain is an adverse prognostic factor for newly diagnosed multiple myeloma patients treated with bortezomib-based regimens. Front Oncol. 12:9385502022. View Article : Google Scholar : PubMed/NCBI | |
Schavgoulidze A, Perrot A, Cazaubiel T, Leleu X, Montes L, Jacquet C, Belhadj K, Brechignac S, Frenzel L, Chalopin T, et al: Prognostic impact of translocation t(14;16) in multiple myeloma according to the presence of additional genetic lesions. Blood Cancer J. 13:1602023. View Article : Google Scholar : PubMed/NCBI | |
Pasvolsky O, Ghanem S, Milton DR, Rauf M, Tanner MR, Bashir Q, Srour S, Saini N, Lin P, Ramdial J, et al: Outcomes of patients with multiple myeloma and 1q gain/amplification receiving autologous hematopoietic stem cell transplant: The MD Anderson cancer center experience. Blood Cancer J. 14:42024. View Article : Google Scholar : PubMed/NCBI | |
Cowan AJ, Green DJ, Kwok M, Lee S, Coffey DG, Holmberg LA, Tuazon S, Gopal AK and Libby EN: Diagnosis and management of multiple myeloma: A review. JAMA. 327:464–477. 2022. View Article : Google Scholar : PubMed/NCBI | |
Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, Kumar S, Hillengass J, Kastritis E, Richardson P, et al: International myeloma working group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 15:e538–e548. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kumar SK and Rajkumar SV: The multiple myelomas-current concepts in cytogenetic classification and therapy. Nat Rev Clin Oncol. 15:409–421. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bazarbachi AH, Al Hamed R, Malard F, Bazarbachi A, Harousseau JL and Mohty M: Induction therapy prior to autologous stem cell transplantation (ASCT) in newly diagnosed multiple myeloma: An update. Blood Cancer J. 12:472022. View Article : Google Scholar : PubMed/NCBI | |
Al Hamed R, Bazarbachi AH, Malard F, Harousseau JL and Mohty M: Current status of autologous stem cell transplantation for multiple myeloma. Blood Cancer J. 9:442019. View Article : Google Scholar : PubMed/NCBI | |
Varma A, Sui D, Milton DR, Tang G, Saini N, Hasan O, Mukherjee A, Joseph JJ, Bashir Q, Rondon G, et al: Outcome of multiple myeloma with chromosome 1q gain and 1p deletion after autologous hematopoietic stem cell transplantation: Propensity score matched analysis. Biol Blood Marrow Transplant. 26:665–671. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kumar SK, Buadi FK and Rajkumar SV: Pros and cons of frontline autologous transplant in multiple myeloma: The debate over timing. Blood. 133:652–659. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ntanasis-Stathopoulos I, Gavriatopoulou M, Kastritis E, Terpos E and Dimopoulos MA: Multiple myeloma: Role of autologous transplantation. Cancer Treat Rev. 82:1019292020. View Article : Google Scholar : PubMed/NCBI | |
Dimopoulos MA, Moreau P, Terpos E, Mateos MV, Zweegman S, Cook G, Delforge M, Hájek R, Schjesvold F, Cavo M, et al: Multiple myeloma: EHA-ESMO clinical practice guidelines for diagnosis, treatment and follow-up†. Ann Oncol. 32:309–322. 2021. View Article : Google Scholar : PubMed/NCBI | |
Brown PA, Shah B, Advani A, Aoun P, Boyer MW, Burke PW, DeAngelo DJ, Dinner S, Fathi AT, Gauthier J, et al: Acute lymphoblastic leukemia, version 2.2021, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 19:1079–1109. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, Yamaguchi Y and Handa H: Identification of a primary target of thalidomide teratogenicity. Science. 327:1345–1350. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS, Wong KK, Bradner JE and Kaelin WG Jr: The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science. 343:305–309. 2014. View Article : Google Scholar : PubMed/NCBI | |
Krönke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M, Svinkina T, Heckl D, Comer E, Li X, et al: Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science. 343:301–305. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang S and Jin FY: Advances on immunomodulatory drugs against multiple myeloma. Zhonghua Xue Ye Xue Za Zhi. 37:262–264. 2016.(In Chinese). PubMed/NCBI | |
Abe Y and Ishida T: Immunomodulatory drugs in the treatment of multiple myeloma. Jpn J Clin Oncol. 49:695–702. 2019. View Article : Google Scholar : PubMed/NCBI | |
Parman T, Wiley MJ and Wells PG: Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nat Med. 5:582–585. 1999. View Article : Google Scholar : PubMed/NCBI | |
Moreau P: How I treat myeloma with new agents. Blood. 130:1507–1513. 2017. View Article : Google Scholar : PubMed/NCBI | |
Quach H, Ritchie D, Stewart AK, Neeson P, Harrison S, Smyth MJ and Prince HM: Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia. 24:22–32. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Zhu H, He R, Kong L, Shao J, Zhuang R, Xi J and Zhang J: Proteasome, a promising therapeutic target for multiple diseases beyond cancer. Drug Des Devel Ther. 14:4327–4342. 2020. View Article : Google Scholar : PubMed/NCBI | |
Thibaudeau TA and Smith DM: A practical review of proteasome pharmacology. Pharmacol Rev. 71:170–197. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nunes AT and Annunziata CM: Proteasome inhibitors: Structure and function. Semin Oncol. 44:377–380. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ito S: Proteasome inhibitors for the treatment of multiple myeloma. Cancers (Basel). 12:2652020. View Article : Google Scholar : PubMed/NCBI | |
Moreau P, Richardson PG, Cavo M, Orlowski RZ, San Miguel JF, Palumbo A and Harousseau JL: Proteasome inhibitors in multiple myeloma: 10 Years later. Blood. 120:947–959. 2012. View Article : Google Scholar : PubMed/NCBI | |
Herndon TM, Deisseroth A, Kaminskas E, Kane RC, Koti KM, Rothmann MD, Habtemariam B, Bullock J, Bray JD, Hawes J, et al: U.S. food and drug administration approval: Carfilzomib for the treatment of multiple myeloma. Clin Cancer Res. 19:4559–4563. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Han X, Zheng G, Yang Y, Li Y, Zhang E, Yang L, Dong M, He D, He J and Cai Z: The adverse impact of a gain in chromosome 1q on the prognosis of multiple myeloma treated with bortezomib-based regimens: A retrospective single-center study in China. Front Oncol. 12:10846832022. View Article : Google Scholar : PubMed/NCBI | |
Kapoor P, Schmidt TM, Jacobus S, Wei Z, Fonseca R, Callander NS, Lonial S, Rajkumar SV and Kumar S: OAB-052: Impact of chromosome 1 abnormalities on newly diagnosed multiple myeloma treated with proteasome inhibitor, immunomodulatory drug, and dexamethasone: Analysis from the ENDURANCE ECOG-ACRIN E1A11 trial. Clin Lymphoma Myeloma Leuk. 21 (Suppl 2):S33–S34. 2021. View Article : Google Scholar | |
Tang HKK, Fung CY, Morgan GJ, Kumar S, Siu L, Ip HWA, Yip SF, Lau KNH, Lau CK, Lee H, et al: The impact of bortezomib-based induction in newly diagnosed multiple myeloma with chromosome 1q21 gain. Ther Adv Hematol. 13:204062072210820432022. View Article : Google Scholar : PubMed/NCBI | |
Panopoulou A, Cairns DA, Holroyd A, Nichols I, Cray N, Pawlyn C, Cook G, Drayson M, Boyd K, Davies FE, et al: Optimizing the value of lenalidomide maintenance by extended genetic profiling: An analysis of 556 patients in the Myeloma XI trial. Blood. 141:1666–1674. 2023. View Article : Google Scholar : PubMed/NCBI | |
D'Agostino M, Ruggeri M, Aquino S, Giuliani N, Arigoni M, Gentile M, Olivero M, Vincelli ID, Capra A, Mussatto C, et al: Impact of gain and amplification of 1q in newly diagnosed multiple myeloma patients receiving carfilzomib-based treatment in the forte trial. Blood. 136 (Suppl 1):S38–S40. 2020. View Article : Google Scholar | |
Misiewicz-Krzeminska I, de Ramón C, Corchete LA, Krzeminski P, Rojas EA, Isidro I, García-Sanz R, Martínez-López J, Oriol A, Bladé J, et al: Quantitative expression of Ikaros, IRF4, and PSMD10 proteins predicts survival in VRD-treated patients with multiple myeloma. Blood Adv. 4:6023–6033. 2020. View Article : Google Scholar : PubMed/NCBI | |
Moreau P, Masszi T, Grzasko N, Bahlis NJ, Hansson M, Pour L, Sandhu I, Ganly P, Baker BW, Jackson SR, et al: Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 374:1621–1634. 2016. View Article : Google Scholar : PubMed/NCBI | |
Avet-Loiseau H, Bahlis NJ, Chng WJ, Masszi T, Viterbo L, Pour L, Ganly P, Palumbo A, Cavo M, Langer C, et al: Ixazomib significantly prolongs progression-free survival in high-risk relapsed/refractory myeloma patients. Blood. 130:2610–2618. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gay F, Musto P, Rota-Scalabrini D, Bertamini L, Belotti A, Galli M, Offidani M, Zamagni E, Ledda A, Grasso M, et al: Carfilzomib with cyclophosphamide and dexamethasone or lenalidomide and dexamethasone plus autologous transplantation or carfilzomib plus lenalidomide and dexamethasone, followed by maintenance with carfilzomib plus lenalidomide or lenalidomide alone for patients with newly diagnosed multiple myeloma (FORTE): A randomised, open-label, phase 2 trial. Lancet Oncol. 22:1705–1720. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu HT and Zhao XY: Regulation of CD38 on multiple myeloma and NK cells by monoclonal antibodies. Int J Biol Sci. 18:1974–1988. 2022. View Article : Google Scholar : PubMed/NCBI | |
van de Donk NWCJ, Richardson PG and Malavasi F: CD38 antibodies in multiple myeloma: Back to the future. Blood. 131:13–29. 2018. View Article : Google Scholar : PubMed/NCBI | |
Krejcik J, Casneuf T, Nijhof IS, Verbist B, Bald J, Plesner T, Syed K, Liu K, van de Donk NW, Weiss BM, et al: Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood. 128:384–394. 2016. View Article : Google Scholar : PubMed/NCBI | |
van de Donk NWCJ and Usmani SZ: CD38 antibodies in multiple myeloma: Mechanisms of action and modes of resistance. Front Immunol. 9:21342018. View Article : Google Scholar : PubMed/NCBI | |
Gozzetti A, Ciofini S, Simoncelli M, Santoni A, Pacelli P, Raspadori D and Bocchia M: Anti CD38 monoclonal antibodies for multiple myeloma treatment. Hum Vaccin Immunother. 18:20526582022. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Acharya C, An G, Zhong M, Feng X, Wang L, Dasilva N, Song Z, Yang G, Adrian F, et al: SAR650984 directly induces multiple myeloma cell death via lysosomal-associated and apoptotic pathways, which is further enhanced by pomalidomide. Leukemia. 30:399–408. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chari A, Kaufman JL, Laubach JP, Sborov DW, Reeves B, Rodriguez C, Silbermann R, Costa LJ, Anderson LD Jr, Nathwani N, et al: Daratumumab plus lenalidomide, bortezomib, and dexamethasone (D-RVd) in transplant-eligible newly diagnosed multiple myeloma (NDMM) patients (Pts): Final analysis of griffin among clinically relevant subgroups. Blood. 140 (Suppl 1):S7278–S7281. 2022. View Article : Google Scholar | |
Mohan M, Weinhold N, Schinke C, Thanedrarajan S, Rasche L, Sawyer JR, Tian E, van Rhee F and Zangari M: Daratumumab in high-risk relapsed/refractory multiple myeloma patients: Adverse effect of chromosome 1q21 gain/amplification and GEP70 status on outcome. Br J Haematol. 189:67–71. 2020. View Article : Google Scholar : PubMed/NCBI | |
Parrondo RD, Gardner LB, Alhaj Moustafa M, Roy V, Sher T, Rasheed A, Warsame RM, Larsen JT, Gonsalves EI, Kourelis T, et al: Therapeutic outcomes of relapsed-refractory multiple myeloma patients with 1q21+treated with daratumumab-based regimens: A retrospective analysis. Blood. 140 (Suppl 1):S7237–S7238. 2022. View Article : Google Scholar | |
Weisel K, Besemer B, Haenel M, Lutz R, Mann C, Munder M, Goerner M, Reinhardt HC, Nogai A, Ko YD, et al: Isatuximab, carfilzomib, lenalidomide, and dexamethasone (Isa-KRd) in patients with high-risk newly diagnosed multiple myeloma: Planned interim analysis of the GMMG-concept trial. Blood. 140 (Suppl 1):S1836–S1838. 2022. View Article : Google Scholar | |
Harrison SJ, Perrot A, Alegre A, Simpson D, Wang MC, Spencer A, Delimpasi S, Hulin C, Sunami K, Facon T, et al: Subgroup analysis of ICARIA-MM study in relapsed/refractory multiple myeloma patients with high-risk cytogenetics. Br J Haematol. 194:120–131. 2021. View Article : Google Scholar : PubMed/NCBI | |
Spicka I, Moreau P, Martin TG, Facon T, Martinez G, Oriol A, Koh Y, Lim A, Mikala G, Rosiñol L, et al: Isatuximab plus carfilzomib and dexamethasone in relapsed multiple myeloma patients with high-risk cytogenetics: IKEMA subgroup analysis. Eur J Haematol. 109:504–512. 2022. View Article : Google Scholar : PubMed/NCBI | |
Martin T, Richardson PG, Facon T, Moreau P, Perrot A, Spicka I, Bisht K, Inchauspé M, Casca F, Macé S, et al: Primary outcomes by 1q21+ status for isatuximab-treated patients with relapsed/refractory multiple myeloma: Subgroup analyses from ICARIA-MM and IKEMA. Haematologica. 107:2485–2491. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hsi ED, Steinle R, Balasa B, Szmania S, Draksharapu A, Shum BP, Huseni M, Powers D, Nanisetti A, Zhang Y, et al: CS1, a potential new therapeutic antibody target for the treatment of multiple myeloma. Clin Cancer Res. 14:2775–2784. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ishibashi M, Morita R and Tamura H: Immune functions of signaling lymphocytic activation molecule family molecules in multiple myeloma. Cancers (Basel). 13:2792021. View Article : Google Scholar : PubMed/NCBI | |
Pazina T, James AM, MacFarlane AW IV, Bezman NA, Henning KA, Bee C, Graziano RF, Robbins MD, Cohen AD and Campbell KS: The anti-SLAMF7 antibody elotuzumab mediates NK cell activation through both CD16-dependent and -independent mechanisms. Oncoimmunology. 6:e13398532017. View Article : Google Scholar : PubMed/NCBI | |
Usmani SZ, Hoering A, Ailawadhi S, Sexton R, Lipe B, Hita SF, Valent J, Rosenzweig M, Zonder JA, Dhodapkar M, et al: Bortezomib, lenalidomide, and dexamethasone with or without elotuzumab in patients with untreated, high-risk multiple myeloma (SWOG-1211): Primary analysis of a randomised, phase 2 trial. Lancet Haematol. 8:e45–e54. 2021. View Article : Google Scholar : PubMed/NCBI | |
Derman BA, Kansagra A, Zonder J, Stefka AT, Grinblatt DL, Anderson LD Jr, Gurbuxani S, Narula S, Rayani S, Major A, et al: Elotuzumab and weekly carfilzomib, lenalidomide, and dexamethasone in patients with newly diagnosed multiple myeloma without transplant intent: A phase 2 measurable residual disease-adapted study. JAMA Oncol. 8:1278–1286. 2022. View Article : Google Scholar : PubMed/NCBI | |
Turner JG, Kashyap T, Dawson JL, Gomez J, Bauer AA, Grant S, Dai Y, Shain KH, Meads M, Landesman Y and Sullivan DM: XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IkappaBalpha and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget. 7:78896–78909. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gandhi UH, Cornell RF, Lakshman A, Gahvari ZJ, McGehee E, Jagosky MH, Gupta R, Varnado W, Fiala MA, Chhabra S, et al: Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia. 33:2266–2275. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tai YT, Landesman Y, Acharya C, Calle Y, Zhong MY, Cea M, Tannenbaum D, Cagnetta A, Reagan M, Munshi AA, et al: CRM1 inhibition induces tumor cell cytotoxicity and impairs osteoclastogenesis in multiple myeloma: Molecular mechanisms and therapeutic implications. Leukemia. 28:155–165. 2014. View Article : Google Scholar : PubMed/NCBI | |
Argueta C, Kashyap T, Klebanov B, Unger TJ, Guo C, Harrington S, Baloglu E, Lee M, Senapedis W, Shacham S and Landesman Y: Selinexor synergizes with dexamethasone to repress mTORC1 signaling and induce multiple myeloma cell death. Oncotarget. 9:25529–25544. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qiu L, Xia Z, Fu C, Chen W, Chang C, Fang B, An G, Wei Y, Cai Z, Gao S, et al: Selinexor plus low-dose dexamethasone in Chinese patients with relapsed/refractory multiple myeloma previously treated with an immunomodulatory agent and a proteasome inhibitor (MARCH): a phase II, single-arm study. BMC Med. 20:1082022. View Article : Google Scholar : PubMed/NCBI | |
Gasparetto C, Schiller GJ, Tuchman SA, Callander NS, Baljevic M, Lentzsch S, Rossi AC, Kotb R, White D, Bahlis NJ, et al: Once weekly selinexor, carfilzomib and dexamethasone in carfilzomib non-refractory multiple myeloma patients. Br J Cancer. 126:718–725. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chng WJ, Dispenzieri A, Chim CS, Fonseca R, Goldschmidt H, Lentzsch S, Munshi N, Palumbo A, Miguel JS, Sonneveld P, et al: IMWG consensus on risk stratification in multiple myeloma. Leukemia. 28:269–277. 2014. View Article : Google Scholar : PubMed/NCBI | |
Palumbo A, Avet-Loiseau H, Oliva S, Lokhorst HM, Goldschmidt H, Rosinol L, Richardson P, Caltagirone S, Lahuerta JJ, Facon T, et al: Revised international staging system for multiple myeloma: A report from international myeloma working group. J Clin Oncol. 33:2863–2869. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sonneveld P, Avet-Loiseau H, Lonial S, Usmani S, Siegel D, Anderson KC, Chng WJ, Moreau P, Attal M, Kyle RA, et al: Treatment of multiple myeloma with high-risk cytogenetics: A consensus of the International myeloma working group. Blood. 127:2955–2962. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rajkumar SV: Multiple myeloma: 2020 Update on diagnosis, risk-stratification and management. Am J Hematol. 95:548–567. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hanamura I: Gain/amplification of chromosome arm 1q21 in multiple myeloma. Cancers (Basel). 13:2562021. View Article : Google Scholar : PubMed/NCBI | |
Goldman-Mazur S, Vesole DH and Jurczyszyn A: Clinical implications of cytogenetic and molecular aberrations in multiple myeloma. Acta Haematol Pol. 52:18–28. 2021. View Article : Google Scholar |