Role of microRNAs in triple‑negative breast cancer and new therapeutic concepts (Review)
- Authors:
- Shaofeng Yang
- Donghai Li
-
Affiliations: Department of Thyroid and Breast Surgery, Affiliated Hospital of Inner Mongolia Medical University, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010050, P.R. China - Published online on: July 11, 2024 https://doi.org/10.3892/ol.2024.14565
- Article Number: 431
-
Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
DeSantis CE, Ma J, Gaudet MM, Newman LA, Miller KD, Goding Sauer A, Jemal A and Siegel RL: Breast cancer statistics, 2019. CA Cancer J Clin. 69:438–451. 2019. View Article : Google Scholar : PubMed/NCBI | |
Global Burden of Disease Cancer Collaboration, . Fitzmaurice C, Akinyemiju TF, Al Lami FH, Alam T, Alizadeh-Navaei R, Allen C, Alsharif U, Alvis-Guzman N, Amini E, et al: Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: A systematic analysis for the global burden of disease study. JAMA Oncol. 4:1553–1568. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI | |
Elizabeth MS, Cristina SBJ and Christian CG: Immunotherapy in combination with chemotherapy for triple-negative breast cancer. Mini Rev Med Chem. 24:431–439. 2024. View Article : Google Scholar : PubMed/NCBI | |
Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z, Rasmussen KE, Jones LP, Assefnia S, Chandrasekharan S, et al: Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol. 8:R762007. View Article : Google Scholar : PubMed/NCBI | |
Pernas S and Tolaney SM: HER2-positive breast cancer: New therapeutic frontiers and overcoming resistance. Ther Adv Med Oncol. 11:1758835919833519. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ferrari P, Scatena C, Ghilli M, Bargagna I, Lorenzini G and Nicolini A: Molecular mechanisms, biomarkers and emerging therapies for chemotherapy resistant TNBC. Int J Mol Sci. 23:16652022. View Article : Google Scholar : PubMed/NCBI | |
Guo XQ and Hua YM: Circular RNAs: novel regulators of resistance to systemic treatments in breast cancer. Neoplasma. 69:1019–1028. 2022. View Article : Google Scholar : PubMed/NCBI | |
Majidinia M and Yousefi B: DNA damage response regulation by microRNAs as a therapeutic target in cancer. DNA Repair (Amst). 47:1–11. 2016. View Article : Google Scholar : PubMed/NCBI | |
Abu-Alghayth MH, Khan FR, Belali TM, Abalkhail A, Alshaghdali K, Nassar SA, Almoammar NE, Almasoudi HH, Hessien KBG, Aldossari MS and Binshaya AS: The emerging role of noncoding RNAs in the PI3K/AKT/mTOR signalling pathway in breast cancer. Pathol Res Pract. 255:1551802024. View Article : Google Scholar : PubMed/NCBI | |
Elfaki I, Mir R, Abu-Duhier FM, Khan R and Sakran M: Phosphatidylinositol 3-kinase Glu545Lys and His1047Tyr Mutations are not Associated with T2D. Curr Diabetes Rev. 16:881–888. 2020. View Article : Google Scholar : PubMed/NCBI | |
Poddar A, Ahmady F, Rao SR, Sharma R, Kannourakis G, Prithviraj P and Jayachandran A: The role of pregnancy associated plasma protein-A in triple negative breast cancer: A promising target for achieving clinical benefits. J Biomed Sci. 31:232024. View Article : Google Scholar : PubMed/NCBI | |
Paszek S, Gabło N, Barnaś E, Szybka M, Morawiec J, Kołacińska A and Zawlik I: Dysregulation of microRNAs in triple-negative breast cancer. Ginekol Pol. 88:530–536. 2017. View Article : Google Scholar : PubMed/NCBI | |
Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI | |
Abdelfattah AM, Park C and Choi MY: Update on non-canonical microRNAs. Biomol Concepts. 5:275–287. 2014. View Article : Google Scholar : PubMed/NCBI | |
O'Brien J, Hayder H, Zayed Y and Peng C: Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar : PubMed/NCBI | |
Kawamata T and Tomari Y: Making RISC. Trends Biochem Sci. 35:368–376. 2010. View Article : Google Scholar : PubMed/NCBI | |
Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010. View Article : Google Scholar : PubMed/NCBI | |
Qin W, Shi Y, Zhao B, Yao C, Jin L, Ma J and Jin Y: miR-24 regulates apoptosis by targeting the open reading frame (ORF) region of FAF1 in cancer cells. PLoS One. 5:e94292010. View Article : Google Scholar : PubMed/NCBI | |
Ørom UA, Nielsen FC and Lund AH: MicroRNA-10a binds the 5′UTR of ribosomal protein mRNAs and enhances their translation. Mol Cell. 30:460–471. 2008. View Article : Google Scholar : PubMed/NCBI | |
Banerjee K and Resat H: Constitutive activation of STAT3 in breast cancer cells: A review. Int J Cancer. 138:2570–2578. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chung SS, Giehl N, Wu Y and Vadgama JV: STAT3 activation in HER2-overexpressing breast cancer promotes epithelial-mesenchymal transition and cancer stem cell traits. Int J Oncol. 44:403–411. 2014. View Article : Google Scholar : PubMed/NCBI | |
Küçük C, Jiang B, Hu X, Zhang W, Chan JK, Xiao W, Lack N, Alkan C, Williams JC, Avery KN, et al: Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat Commun. 6:60252015. View Article : Google Scholar : PubMed/NCBI | |
Heppler LN and Frank DA: Rare mutations provide unique insight into oncogenic potential of STAT transcription factors. J Clin Invest. 128:113–115. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rajala HL, Eldfors S, Kuusanmäki H, van Adrichem AJ, Olson T, Lagström S, Andersson EI, Jerez A, Clemente MJ, Yan Y, et al: Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood. 121:4541–4550. 2013. View Article : Google Scholar : PubMed/NCBI | |
de Araujo ED, Keserű GM, Gunning PT and Moriggl R: Targeting STAT3 and STAT5 in Cancer. Cancers (Basel). 12:20022020. View Article : Google Scholar : PubMed/NCBI | |
Owen KL, Brockwell NK and Parker BS: JAK-STAT Signaling: A double-edged sword of immune regulation and cancer progression. Cancers (Basel). 11:20022019. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Pang A and Li Y: Function of GCN5 in the TGF-β1-induced epithelial-to-mesenchymal transition in breast cancer. Oncol Lett. 16:3955–3963. 2018.PubMed/NCBI | |
López-Mejía JA, Mantilla-Ollarves JC and Rocha-Zavaleta L: Modulation of JAK-STAT Signaling by LNK: A forgotten oncogenic pathway in hormone receptor-positive breast cancer. Int J Mol Sci. 24:147772023. View Article : Google Scholar : PubMed/NCBI | |
Budi EH, Duan D and Derynck R: Transforming Growth Factor-β Receptors and Smads: Regulatory complexity and functional versatility. Trends Cell Biol. 27:658–672. 2017. View Article : Google Scholar : PubMed/NCBI | |
Said SS and Ibrahim WN: Breaking Barriers: The promise and challenges of immune checkpoint inhibitors in triple-negative breast cancer. Biomedicines. 12:3692024. View Article : Google Scholar : PubMed/NCBI | |
Heldin CH and Moustakas A: Signaling Receptors for TGF-β Family Members. Cold Spring Harb Perspect Biol. 8:a0220532016. View Article : Google Scholar : PubMed/NCBI | |
Wrana JL, Attisano L, Wieser R, Ventura F and Massagué J: Mechanism of activation of the TGF-beta receptor. Nature. 370:341–347. 1994. View Article : Google Scholar : PubMed/NCBI | |
Moustakas A, Souchelnytskyi S and Heldin CH: Smad regulation in TGF-beta signal transduction. J Cell Sci. 114((Pt 24)): 4359–4369. 2001. View Article : Google Scholar : PubMed/NCBI | |
Christodoulou C, Oikonomopoulos G, Koliou GA, Kostopoulos I, Kotoula V, Bobos M, Pentheroudakis G, Lazaridis G, Skondra M, Chrisafi S, et al: Evaluation of the insulin-like growth factor receptor pathway in patients with advanced breast cancer treated with trastuzumab. Cancer Genomics Proteomics. 15:461–471. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee JS, Tocheny CE and Shaw LM: The insulin-like growth factor signaling pathway in breast cancer: An elusive therapeutic target. Life (Basel). 12:19922022.PubMed/NCBI | |
Bilanges B, Posor Y and Vanhaesebroeck B: PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol. 20:515–534. 2019. View Article : Google Scholar : PubMed/NCBI | |
Vanhaesebroeck B, Perry MWD, Brown JR, André F and Okkenhaug K: PI3K inhibitors are finally coming of age. Nat Rev Drug Discov. 20:741–769. 2021. View Article : Google Scholar : PubMed/NCBI | |
Engelman JA: Targeting PI3K signalling in cancer: Opportunities, challenges and limitations. Nat Rev Cancer. 9:550–562. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mayer IA and Arteaga CL: The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med. 67:11–28. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tariq K and Luikart BW: Striking a balance: PIP(2) and PIP(3) signaling in neuronal health and disease. Explor Neuroprotective Ther. 1:86–100. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hu M, Zhu S, Xiong S, Xue X and Zhou X: MicroRNAs and the PTEN/PI3K/Akt pathway in gastric cancer (Review). Oncol Rep. 41:1439–1454. 2019.PubMed/NCBI | |
Li YJ, Li XF, Yang EH and Shi M: Reaserch Advances on the Role of PI3K/AKT Signaling Pathway and MiRNA in Acute T-Cell Lymphocytic Leukemia-Review. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 27:1344–1347. 2019.(In Chinese). PubMed/NCBI | |
Pereira B, Chin SF, Rueda OM, Vollan HK, Provenzano E, Bardwell HA, Pugh M, Jones L, Russell R, Sammut SJ, et al: The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nat Commun. 7:114792016. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Wang X, Wen G and Ren Y: miRNA-205-5p functions as a tumor suppressor by negatively regulating VEGFA and PI3K/Akt/mTOR signaling in renal carcinoma cells. Oncol Rep. 42:1677–1688. 2019.PubMed/NCBI | |
Hoxhaj G and Manning BD: The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 20:74–88. 2020. View Article : Google Scholar : PubMed/NCBI | |
Walter BA, Gómez-Macias G, Valera VA, Sobel M and Merino MJ: miR-21 expression in pregnancy-associated breast cancer: A possible marker of poor prognosis. J Cancer. 2:67–75. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gimm O, Perren A, Weng LP, Marsh DJ, Yeh JJ, Ziebold U, Gil E, Hinze R, Delbridge L, Lees JA, et al: Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue, and benign and malignant epithelial thyroid tumors. Am J Pathol. 156:1693–1700. 2000. View Article : Google Scholar : PubMed/NCBI | |
Li B, Lu Y, Wang H, Han X, Mao J, Li J, Yu L, Wang B, Fan S, Yu X and Song B: RETRACTED: miR-221/222 enhance the tumorigenicity of human breast cancer stem cells via modulation of PTEN/Akt pathway. Biomed Pharmacother. 79:93–101. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li B, Lu Y, Wang H, Han X, Mao J, Li J, Yu L, Wang B, Fan S, Yu X and Song B: miR-221/222 enhance the tumorigenicity of human breast cancer stem cells via modulation of PTEN/Akt pathway. Biomed Pharmacother. 79:93–101. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bahena-Ocampo I, Espinosa M, Ceballos-Cancino G, Lizarraga F, Campos-Arroyo D, Schwarz A, Maldonado V, Melendez-Zajgla J and Garcia-Lopez P: miR-10b expression in breast cancer stem cells supports self-renewal through negative PTEN regulation and sustained AKT activation. EMBO Rep. 17:648–658. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sarbassov DD, Guertin DA, Ali SM and Sabatini DM: Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 307:1098–1101. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Han Y, Cheng K, Zhang G and Wang X: miR-99a directly targets the mTOR signalling pathway in breast cancer side population cells. Cell Prolif. 47:587–595. 2014. View Article : Google Scholar : PubMed/NCBI | |
Imam JS, Plyler JR, Bansal H, Prajapati S, Bansal S, Rebeles J, Chen HI, Chang YF, Panneerdoss S, Zoghi B, et al: Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization. PLoS One. 7:e523972012. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Zhao R, He Y, Fu X, Fu L, Zhu Z, Fu L and Dong JT: MicroRNA 100 sensitizes luminal A breast cancer cells to paclitaxel treatment in part by targeting mTOR. Oncotarget. 7:5702–5714. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pakravan K, Babashah S, Sadeghizadeh M, Mowla SJ, Mossahebi-Mohammadi M, Ataei F, Dana N and Javan M: MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells. Cell Oncol (Dordr). 40:457–470. 2017. View Article : Google Scholar : PubMed/NCBI | |
Janaki Ramaiah M, Lavanya A, Honarpisheh M, Zarea M, Bhadra U and Bhadra MP: MiR-15/16 complex targets p70S6 kinase 1 and controls cell proliferation in MDA-MB-231 breast cancer cells. Gene. 552:255–264. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Zhu Q and Tang L: MiR-99a antitumor activity in human breast cancer cells through targeting of mTOR expression. PLoS One. 9:e920992014. View Article : Google Scholar : PubMed/NCBI | |
Zhang ZW, Guo RW, Lv JL, Wang XM, Ye JS, Lu NH, Liang X and Yang LX: MicroRNA-99a inhibits insulin-induced proliferation, migration, dedifferentiation, and rapamycin resistance of vascular smooth muscle cells by inhibiting insulin-like growth factor-1 receptor and mammalian target of rapamycin. Biochem Biophys Res Commun. 486:414–422. 2017. View Article : Google Scholar : PubMed/NCBI | |
Banerjee S, Biehl A, Gadina M, Hasni S and Schwartz DM: JAK-STAT signaling as a target for inflammatory and autoimmune diseases: Current and Future Prospects. Drugs. 77:521–546. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liang YK, Lin HY, Dou XW, Chen M, Wei XL, Zhang YQ, Wu Y, Chen CF, Bai JW, Xiao YS, et al: MiR-221/222 promote epithelial-mesenchymal transition by targeting Notch3 in breast cancer cell lines. NPJ Breast Cancer. 4:202018. View Article : Google Scholar : PubMed/NCBI | |
Han M, Wang Y, Guo G, Li L, Dou D, Ge X, Lv P, Wang F and Gu Y: microRNA-30d mediated breast cancer invasion, migration, and EMT by targeting KLF11 and activating STAT3 pathway. J Cell Biochem. 119:8138–8145. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mayoral-Varo V, Calcabrini A, Sánchez-Bailón MP and Martín-Pérez J: miR205 inhibits stem cell renewal in SUM159PT breast cancer cells. PLoS One. 12:e01886372017. View Article : Google Scholar : PubMed/NCBI | |
Lv C, Li F, Li X, Tian Y, Zhang Y, Sheng X, Song Y, Meng Q, Yuan S, Luan L, et al: MiR-31 promotes mammary stem cell expansion and breast tumorigenesis by suppressing Wnt signaling antagonists. Nat Commun. 8:10362017. View Article : Google Scholar : PubMed/NCBI | |
Shi P, Chen C, Li X, Wei Z, Liu Z and Liu Y: MicroRNA-124 suppresses cell proliferation and invasion of triple negative breast cancer cells by targeting STAT3. Mol Med Rep. 19:3667–3675. 2019.PubMed/NCBI | |
Qin Z, He W, Tang J, Ye Q, Dang W, Lu Y, Wang J, Li G, Yan Q and Ma J: MicroRNAs Provide Feedback Regulation of Epithelial-Mesenchymal Transition Induced by Growth Factors. J Cell Physiol. 231:120–129. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Wu B, Huang S, Peng X, Li X, Huang X, Zhou W, Xie P and He P: Downregulation of miR-505-3p predicts poor bone metastasis-free survival in prostate cancer. Oncol Rep. 41:57–66. 2019.PubMed/NCBI | |
Wang S, Huang M, Wang Z, Wang W, Zhang Z, Qu S and Liu C: MicroRNA-133b targets TGFβ receptor I to inhibit TGF-β-induced epithelial-to-mesenchymal transition and metastasis by suppressing the TGF-β/SMAD pathway in breast cancer. Int J Oncol. 55:1097–1109. 2019.PubMed/NCBI | |
Wang J, Liang S and Duan X: Molecular mechanism of miR-153 inhibiting migration, invasion and epithelial-mesenchymal transition of breast cancer by regulating transforming growth factor beta (TGF-β) signaling pathway. J Cell Biochem. 120:9539–9546. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dai X, Fang M, Li S, Yan Y, Zhong Y and Du B: miR-21 is involved in transforming growth factor β1-induced chemoresistance and invasion by targeting PTEN in breast cancer. Oncol Lett. 14:6929–6936. 2017.PubMed/NCBI | |
Chen Y, Huang S, Wu B, Fang J, Zhu M, Sun L, Zhang L, Zhang Y, Sun M, Guo L and Wang S: Transforming growth factor-β1 promotes breast cancer metastasis by downregulating miR-196a-3p expression. Oncotarget. 8:49110–49122. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Hong M, Lian WW and Chen Z: Review of the pharmacological effects of astragaloside IV and its autophagic mechanism in association with inflammation. World J Clin Cases. 10:10004–10016. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang GN, Zhang YK, Wang YJ, Gupta P, Ashby CR Jr, Alqahtani S, Deng T, Bates SE, Kaddoumi A, Wurpel JND, et al: Epidermal growth factor receptor (EGFR) inhibitor PD153035 reverses ABCG2-mediated multidrug resistance in non-small cell lung cancer: In vitro and in vivo. Cancer Lett. 424:19–29. 2018. View Article : Google Scholar : PubMed/NCBI | |
Farabaugh SM, Boone DN and Lee AV: Role of IGF1R in breast cancer subtypes, stemness, and lineage differentiation. Front Endocrinol (Lausanne). 6:592015. View Article : Google Scholar : PubMed/NCBI | |
Jang GB, Hong IS, Kim RJ, Lee SY, Park SJ, Lee ES, Park JH, Yun CH, Chung JU, Lee KJ, et al: Wnt/β-Catenin Small-Molecule Inhibitor CWP232228 preferentially inhibits the growth of breast cancer stem-like cells. Cancer Res. 75:1691–1702. 2015. View Article : Google Scholar : PubMed/NCBI | |
Clemmons DR: Modifying IGF1 activity: An approach to treat endocrine disorders, atherosclerosis and cancer. Nat Rev Drug Discov. 6:821–833. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cao J and Yee D: Disrupting Insulin and IGF receptor function in cancer. Int J Mol Sci. 22:5552021. View Article : Google Scholar : PubMed/NCBI | |
Bowers LW, Cavazos DA, Maximo IX, Brenner AJ, Hursting SD and deGraffenried LA: Obesity enhances nongenomic estrogen receptor crosstalk with the PI3K/Akt and MAPK pathways to promote in vitro measures of breast cancer progression. Breast Cancer Res. 15:R592013. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Chao L, Wang J and Sun Y: miRNA-148a regulates the expression of the estrogen receptor through DNMT1-mediated DNA methylation in breast cancer cells. Oncol Lett. 14:4736–4740. 2017. View Article : Google Scholar : PubMed/NCBI | |
Melnik BC: Milk disrupts p53 and DNMT1, the guardians of the genome: Implications for acne vulgaris and prostate cancer. Nutr Metab (Lond). 14:552017. View Article : Google Scholar : PubMed/NCBI | |
Li X, Tang X, Li K and Lu L: Evaluation of Serum MicroRNAs (miR-9-5p, miR-17-5p, and miR-148a-3p) as potential biomarkers of breast cancer. Biomed Res Int. 2022:99614122022.PubMed/NCBI | |
Chawra HS, Agarwal M, Mishra A, Chandel SS, Singh RP, Dubey G, Kukreti N and Singh M: MicroRNA-21′s role in PTEN suppression and PI3K/AKT activation: Implications for cancer biology. Pathol Res Pract. 254:1550912024. View Article : Google Scholar : PubMed/NCBI | |
Ruskovska T, Budić-Leto I, Corral-Jara KF, Ajdžanović V, Arola-Arnal A, Bravo FI, Deligiannidou GE, Havlik J, Janeva M, Kistanova E, et al: Systematic analysis of nutrigenomic effects of polyphenols related to cardiometabolic health in humans-Evidence from untargeted mRNA and miRNA studies. Ageing Res Rev. 79:1016492022. View Article : Google Scholar : PubMed/NCBI | |
Curtale G, Rubino M and Locati M: MicroRNAs as molecular switches in macrophage activation. Front Immunol. 10:7992019. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-González I, Bobien A, Molnar C, Schmid S, Strotbek M, Boerries M, Busch H and Olayioye MA: miR-149 suppresses breast cancer metastasis by blocking paracrine interactions with macrophages. Cancer Res. 80:1330–1341. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zou X, Xia T, Li M, Wang T, Liu P, Zhou X, Huang Z and Zhu W: MicroRNA profiling in serum: Potential signatures for breast cancer diagnosis. Cancer Biomark. 30:41–53. 2021. View Article : Google Scholar : PubMed/NCBI | |
Warth SC, Hoefig KP, Hiekel A, Schallenberg S, Jovanovic K, Klein L, Kretschmer K, Ansel KM and Heissmeyer V: Induced miR-99a expression represses Mtor cooperatively with miR-150 to promote regulatory T-cell differentiation. EMBO J. 34:1195–1213. 2015. View Article : Google Scholar : PubMed/NCBI | |
Singh Y, Garden OA, Lang F and Cobb BS: MicroRNA-15b/16 enhances the induction of regulatory T cells by regulating the expression of rictor and mTOR. J Immunol. 195:5667–5677. 2015. View Article : Google Scholar : PubMed/NCBI | |
Simanovich E, Brod V, Rahat MM and Rahat MA: Function of miR-146a-5p in tumor cells as a regulatory switch between cell death and angiogenesis: Macrophage therapy revisited. Front Immunol. 8:19312018. View Article : Google Scholar : PubMed/NCBI | |
Zarogoulidis P, Petanidis S, Domvri K, Kioseoglou E, Anestakis D, Freitag L, Zarogoulidis K, Hohenforst-Schmidt W and Eberhardt W: Autophagy inhibition upregulates CD4(+) tumor infiltrating lymphocyte expression via miR-155 regulation and TRAIL activation. Mol Oncol. 10:1516–1531. 2016. View Article : Google Scholar : PubMed/NCBI | |
Giger ML: Update on the potential of computer-aided diagnosis for breast cancer. Future Oncol. 6:1–4. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bilska-Wolak AO, Floyd CE Jr, Lo JY and Baker JA: Computer aid for decision to biopsy breast masses on mammography: Validation on new cases. Acad Radiol. 12:671–680. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nassif AB, Talib MA, Nasir Q, Afadar Y and Elgendy O: Breast cancer detection using artificial intelligence techniques: A systematic literature review. Artif Intell Med. 127:1022762022. View Article : Google Scholar : PubMed/NCBI | |
Yanagawa M, Niioka H, Hata A, Kikuchi N, Honda O, Kurakami H, Morii E, Noguchi M, Watanabe Y, Miyake J and Tomiyama N: Application of deep learning (3-dimensional convolutional neural network) for the prediction of pathological invasiveness in lung adenocarcinoma: A preliminary study. Medicine (Baltimore). 98:e161192019. View Article : Google Scholar : PubMed/NCBI | |
Tran WT, Sadeghi-Naini A, Lu FI, Gandhi S, Meti N, Brackstone M, Rakovitch E and Curpen B: Computational radiology in breast cancer screening and diagnosis using artificial intelligence. Can Assoc Radiol J. 72:98–108. 2021. View Article : Google Scholar : PubMed/NCBI | |
Welch HG, Prorok PC, O'Malley AJ and Kramer BS: Breast-Cancer tumor size, overdiagnosis, and mammography screening effectiveness. N Engl J Med. 375:1438–1447. 2016. View Article : Google Scholar : PubMed/NCBI | |
S P, N KV and S S: Breast cancer detection using crow search optimization based intuitionistic fuzzy clustering with neighborhood attraction. Asian Pac J Cancer Prev. 20:157–165. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cruz-Bernal A, Flores-Barranco MM, Almanza-Ojeda DL, Ledesma S and Ibarra-Manzano MA: Analysis of the Cluster Prominence Feature for Detecting Calcifications in Mammograms. J Healthc Eng. 2018:28495672018. View Article : Google Scholar : PubMed/NCBI | |
Hmida M, Hamrouni K, Solaiman B and Boussetta S: Mammographic mass segmentation using fuzzy contours. Comput Methods Programs Biomed. 164:131–142. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lei YM, Yin M, Yu MH, Yu J, Zeng SE, Lv WZ, Li J, Ye HR, Cui XW and Dietrich CF: Artificial intelligence in medical imaging of the breast. Front Oncol. 11:6005572021. View Article : Google Scholar : PubMed/NCBI | |
Herranz H and Cohen SM: MicroRNAs and gene regulatory networks: Managing the impact of noise in biological systems. Genes Dev. 24:1339–1344. 2010. View Article : Google Scholar : PubMed/NCBI | |
Nassar FJ, Nasr R and Talhouk R: MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther. 172:34–49. 2017. View Article : Google Scholar : PubMed/NCBI | |
Itani MM, Nassar FJ, Tfayli AH, Talhouk RS, Chamandi GK, Itani ARS, Makoukji J, Boustany RN, Hou L, Zgheib NK and Nasr RR: A signature of four circulating microRNAs as potential biomarkers for diagnosing early-stage breast cancer. Int J Mol Sci. 22:61212021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Tan Z, Hu H, Liu H, Wu T, Zheng C, Wang X, Luo Z, Wang J, Liu S, et al: microRNA-21 promotes breast cancer proliferation and metastasis by targeting LZTFL1. BMC Cancer. 19:7382019. View Article : Google Scholar : PubMed/NCBI | |
Najjary S, Mohammadzadeh R, Mokhtarzadeh A, Mohammadi A, Kojabad AB and Baradaran B: Role of miR-21 as an authentic oncogene in mediating drug resistance in breast cancer. Gene. 738:1444532020. View Article : Google Scholar : PubMed/NCBI | |
Shi Y, Ye P and Long X: Differential expression profiles of the transcriptome in breast cancer cell lines revealed by next generation sequencing. Cell Physiol Biochem. 44:804–816. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dinami R, Ercolani C, Petti E, Piazza S, Ciani Y, Sestito R, Sacconi A, Biagioni F, le Sage C, Agami R, et al: miR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res. 74:4145–4156. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ding L, Gu H, Xiong X, Ao H, Cao J, Lin W, Yu M, Lin J and Cui Q: MicroRNAs involved in carcinogenesis, prognosis, therapeutic resistance and applications in human triple-negative breast cancer. Cells. 8:14922019. View Article : Google Scholar : PubMed/NCBI | |
Rajabi H, Jin C, Ahmad R, McClary C, Joshi MD and Kufe D: MUCIN 1 ONCOPROTEIN EXPRESSION IS SUPPRESSED BY THE miR-125b ONCOMIR. Genes Cancer. 1:62–68. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tang F, Zhang R, He Y, Zou M, Guo L and Xi T: MicroRNA-125b induces metastasis by targeting STARD13 in MCF-7 and MDA-MB-231 breast cancer cells. PLoS One. 7:e354352012. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Oh DY, Leventaki V, Drakos E, Zhang R, Sahin AA, Resetkova E, Edgerton ME, Wu W and Claret FX: MicroRNA-17 acts as a tumor chemosensitizer by targeting JAB1/CSN5 in triple-negative breast cancer. Cancer Lett. 465:12–23. 2019. View Article : Google Scholar : PubMed/NCBI | |
Teichgraeber DC, Guirguis MS and Whitman GJ: Breast cancer staging: Updates in the AJCC cancer staging manual, 8th edition, and current challenges for radiologists, from the AJR special series on cancer staging. AJR Am J Roentgenol. 217:278–290. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang ZX, Lu BB, Wang H, Cheng ZX and Yin YM: MicroRNA-21 modulates chemosensitivity of breast cancer cells to doxorubicin by targeting PTEN. Arch Med Res. 42:281–290. 2011. View Article : Google Scholar : PubMed/NCBI | |
Filková M, Jüngel A, Gay RE and Gay S: MicroRNAs in rheumatoid arthritis: Potential role in diagnosis and therapy. BioDrugs. 26:131–141. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Haupt S, Kreuzer JT, Hammitzsch A, Proft F, Neumann C, Leipe J, Witt M, Schulze-Koops H and Skapenko A: Decreased expression of miR-146a and miR-155 contributes to an abnormal Treg phenotype in patients with rheumatoid arthritis. Ann Rheum Dis. 74:1265–1274. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sun SS, Zhou X, Huang YY, Kong LP, Mei M, Guo WY, Zhao MH, Ren Y, Shen Q and Zhang L: Targeting STAT3/miR-21 axis inhibits epithelial-mesenchymal transition via regulating CDK5 in head and neck squamous cell carcinoma. Mol Cancer. 14:2132015. View Article : Google Scholar : PubMed/NCBI | |
Carbognin L, Miglietta F, Paris I and Dieci MV: Prognostic and predictive implications of PTEN in breast cancer: Unfulfilled promises but intriguing perspectives. Cancers (Basel). 11:14012019. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Li R, Shi W, Jiang T, Wang Y, Li C and Qu X: Silencing of MicroRNA-21 confers the sensitivity to tamoxifen and fulvestrant by enhancing autophagic cell death through inhibition of the PI3K-AKT-mTOR pathway in breast cancer cells. Biomed Pharmacother. 77:37–44. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yan LX, Wu QN, Zhang Y, Li YY, Liao DZ, Hou JH, Fu J, Zeng MS, Yun JP, Wu QL, et al: Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast Cancer Res. 13:R22011. View Article : Google Scholar : PubMed/NCBI | |
Wu X: Expressions of miR-21 and miR-210 in breast cancer and their predictive values for prognosis. Iran J Public Health. 49:21–29. 2020.PubMed/NCBI | |
Nivetha R, Arvindh S, Baba AB, Gade DR, Gopal G, K C, Reddy KP, Reddy GB and Nagini S: Nimbolide, a neem limonoid, inhibits angiogenesis in breast cancer by abrogating aldose reductase mediated IGF-1/PI3K/Akt signalling. Anticancer Agents Med Chem. 22:2619–2636. 2022. View Article : Google Scholar : PubMed/NCBI |