T lymphocyte‑related immune response and immunotherapy in gastric cancer (Review)
- Authors:
- Zhaoxiong Zhang
- Wenxin Zhang
- Xin Liu
- Yongjia Yan
- Weihua Fu
-
Affiliations: Department of General Surgery, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China - Published online on: September 6, 2024 https://doi.org/10.3892/ol.2024.14670
- Article Number: 537
This article is mentioned in:
Abstract
Hundahl SA, Phillips JL and Menck HR: The national cancer data base report on poor survival of U.S. gastric carcinoma patients treated with gastrectomy: Fifth edition American joint committee on cancer staging, proximal disease, and the ‘different disease’ hypothesis. Cancer. 88:921–932. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China, 2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, Scarffe JH, Lofts FJ, Falk SJ, Iveson TJ, et al: Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 355:11–20. 2006. View Article : Google Scholar : PubMed/NCBI | |
Macdonald JS, Smalley SR, Benedetti J, Hundahl SA, Estes NC, Stemmermann GN, Haller DG, Ajani JA, Gunderson LL, Jessup JM and Martenson JA: Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N Engl J Med. 345:725–730. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Karimi P, Islami F, Anandasabapathy S, Freedman ND and Kamangar F: Gastric cancer: Descriptive epidemiology, risk factors, screening, and prevention. Cancer Epidemiol Biomarkers Prev. 23:700–713. 2014. View Article : Google Scholar : PubMed/NCBI | |
Thrift AP and El-Serag HB: Burden of gastric cancer. Clin Gastroenterol Hepatol. 18:534–542. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shrihari TG: Dual role of inflammatory mediators in cancer. Ecancermedicalscience. 11:7212017. View Article : Google Scholar : PubMed/NCBI | |
Kershaw MH, Westwood JA and Darcy PK: Gene-engineered T cells for cancer therapy. Nat Rev Cancer. 13:525–541. 2013. View Article : Google Scholar : PubMed/NCBI | |
Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, et al: Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Engl J Med. 373:23–34. 2015. View Article : Google Scholar : PubMed/NCBI | |
Reck M, Rodriguez-Abreu D, Robinson AG, Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe S, et al: Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med. 375:1823–1833. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chia NY and Tan P: Molecular classification of gastric cancer. Ann Oncol. 27:763–769. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guan WL, He Y and Xu RH: Gastric cancer treatment: Recent progress and future perspectives. J Hematol Oncol. 16:572023. View Article : Google Scholar : PubMed/NCBI | |
Shah MA, Bang YJ, Lordick F, Alsina M, Chen M, Hack SP, Bruey JM, Smith D, McCaffery I, Shames DS, et al: Effect of fluorouracil, leucovorin, and oxaliplatin with or without onartuzumab in HER2-Negative, MET-Positive gastroesophageal adenocarcinoma: The METGastric Randomized Clinical Trial. JAMA Oncol. 3:620–627. 2017. View Article : Google Scholar : PubMed/NCBI | |
Waddell T, Chau I, Cunningham D, Gonzalez D, Okines AF, Okines C, Wotherspoon A, Saffery C, Middleton G, Wadsley J, et al: Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): A randomised, open-label phase 3 trial. Lancet Oncol. 14:481–489. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, et al: Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet. 376:687–697. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, Safran H, Dos Santos LV, Aprile G, Ferry DR, et al: Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 383:31–39. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, Hironaka S, Sugimoto N, Lipatov O, Kim TY, et al: Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 15:1224–1235. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y and Zhang Z: The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 17:807–821. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schreiber RD, Old LJ and Smyth MJ: Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion. Science. 331:1565–1570. 2011. View Article : Google Scholar : PubMed/NCBI | |
Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al: Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 373:1803–1813. 2015. View Article : Google Scholar : PubMed/NCBI | |
Niccolai E, Taddei A, Prisco D and Amedei A: Gastric cancer and the epoch of immunotherapy approaches. World J Gastroenterol. 21:5778–5793. 2015. View Article : Google Scholar : PubMed/NCBI | |
St Paul M and Ohashi PS: The roles of CD8+ T cell subsets in antitumor immunity. Trends Cell Biol. 30:695–704. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ruterbusch M, Pruner KB, Shehata L and Pepper M: In Vivo CD4+ T cell differentiation and function: Revisiting the Th1/Th2 Paradigm. Annu Rev Immunol. 38:705–725. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen DS and Mellman I: Oncology meets immunology: The cancer-immunity cycle. Immunity. 39:1–10. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kim JM and Chen DS: Immune escape to PD-L1/PD-1 blockade: Seven steps to success (or failure). Ann Oncol. 27:1492–1504. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jhunjhunwala S, Hammer C and Delamarre L: Antigen presentation in cancer: Insights into tumour immunogenicity and immune evasion. Nat Rev Cancer. 21:298–312. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF and Sancho D: Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 20:7–24. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ozga AJ, Chow MT and Luster AD: Chemokines and the immune response to cancer. Immunity. 54:859–874. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yi M, Li T, Niu M, Mei Q, Zhao B, Chu Q, Dai Z and Wu K: Exploiting innate immunity for cancer immunotherapy. Mol Cancer. 22:1872023. View Article : Google Scholar : PubMed/NCBI | |
Gajewski TF, Schreiber H and Fu YX: Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 14:1014–1022. 2013. View Article : Google Scholar : PubMed/NCBI | |
Finn OJ: A Believer's overview of cancer immunosurveillance and immunotherapy. J Immunol. 200:385–391. 2018. View Article : Google Scholar : PubMed/NCBI | |
Poschke I, Faryna M, Bergmann F, Flossdorf M, Lauenstein C, Hermes J, Hinz U, Hank T, Ehrenberg R, Volkmar M, et al: Identification of a tumor-reactive T-cell repertoire in the immune infiltrate of patients with resectable pancreatic ductal adenocarcinoma. Oncoimmunology. 5:e12408592016. View Article : Google Scholar : PubMed/NCBI | |
Balachandran VP, Luksza M, Zhao JN, Makarov V, Moral JA, Remark R, Herbst B, Askan G, Bhanot U, Senbabaoglu Y, et al: Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature. 551:512–516. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schumacher TN and Schreiber RD: Neoantigens in cancer immunotherapy. Science. 348:69–74. 2015. View Article : Google Scholar : PubMed/NCBI | |
Coulie PG, Van den Eynde BJ, van der Bruggen P and Boon T: Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 14:135–146. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee CH, Yelensky R, Jooss K and Chan TA: Update on tumor neoantigens and their utility: Why It is good to be different. Trends Immunol. 39:536–548. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen L and Flies DB: Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 13:227–242. 2013. View Article : Google Scholar : PubMed/NCBI | |
Flieswasser T, Van den Eynde A, Van Audenaerde J, De Waele J, Lardon F, Riether C, de Haard H, Smits E, Pauwels P and Jacobs J: The CD70-CD27 axis in oncology: the new kids on the block. J Exp Clin Cancer Res. 41:122022. View Article : Google Scholar : PubMed/NCBI | |
Tang T, Cheng X, Truong B, Sun L, Yang X and Wang H: Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. Pharmacol Ther. 219:1077092021. View Article : Google Scholar : PubMed/NCBI | |
Schwartz RH: T cell anergy. Annu Rev Immunol. 21:305–334. 2003. View Article : Google Scholar : PubMed/NCBI | |
Pardoll DM: The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hathcock KS, Laszlo G, Dickler HB, Bradshaw J, Linsley P and Hodes RJ: Identification of an alternative CTLA-4 ligand costimulatory for T cell activation. Science. 262:905–907. 1993. View Article : Google Scholar : PubMed/NCBI | |
Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V, et al: PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 515:568–571. 2014. View Article : Google Scholar : PubMed/NCBI | |
Maeda TK, Sugiura D, Okazaki IM, Maruhashi T and Okazaki T: Atypical motifs in the cytoplasmic region of the inhibitory immune co-receptor LAG-3 inhibit T cell activation. J Biol Chem. 294:6017–6026. 2019. View Article : Google Scholar : PubMed/NCBI | |
Patsoukis N, Wang Q, Strauss L and Boussiotis VA: Revisiting the PD-1 pathway. Sci Adv. 6:eabd27122020. View Article : Google Scholar : PubMed/NCBI | |
Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, et al: PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2:261–268. 2001. View Article : Google Scholar : PubMed/NCBI | |
Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB and Bluestone JA: CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1:405–413. 1994. View Article : Google Scholar : PubMed/NCBI | |
Krummel MF and Allison JP: CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med. 182:459–465. 1995. View Article : Google Scholar : PubMed/NCBI | |
Moreno Ayala MA, Campbell TF, Zhang C, Dahan N, Bockman A, Prakash V, Feng L, Sher T and DuPage M: CXCR3 expression in regulatory T cells drives interactions with type I dendritic cells in tumors to restrict CD8+ T cell antitumor immunity. Immunity. 56:1613–1630.e5. 2023. View Article : Google Scholar : PubMed/NCBI | |
Caridade M, Graca L and Ribeiro RM: Mechanisms Underlying CD4+ Treg immune regulation in the adult: From experiments to models. Front Immunol. 4:3782013. View Article : Google Scholar : PubMed/NCBI | |
Maj T, Wang W, Crespo J, Zhang H, Wang W, Wei S, Zhao L, Vatan L, Shao I, Szeliga W, et al: Oxidative stress controls regulatory T cell apoptosis and suppressor activity and PD-L1-blockade resistance in tumor. Nat Immunol. 18:1332–1341. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen DS and Mellman I: Elements of cancer immunity and the cancer-immune set point. Nature. 541:321–330. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, et al: IFN-ү-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 127:2930–2940. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gajewski TF: The next hurdle in cancer immunotherapy: Overcoming the Non-T-Cell-inflamed tumor microenvironment. Semin Oncol. 42:663–671. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kang BW, Seo AN, Yoon S, Bae HI, Jeon SW, Kwon OK, Chung HY, Yu W, Kang H and Kim JG: Prognostic value of tumor-infiltrating lymphocytes in Epstein-Barr virus-associated gastric cancer. Ann Oncol. 27:494–501. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim Y, Rhee YY, Wen X, Cho NY, Bae JM, Kim WH and Kang GH: Combination of L1 methylation and tumor-infiltrating lymphocytes as prognostic marker in advanced gastric cancer. Gastric Cancer. 23:464–472. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pötzsch M, Berg E, Hummel M, Stein U, von Winterfeld M, Jöhrens K, Rau B, Daum S and Treese C: Better prognosis of gastric cancer patients with high levels of tumor infiltrating lymphocytes is counteracted by PD-1 expression. Oncoimmunology. 9:18246322020. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Huang Z, Ge J, Yang J, Chen J, Xu B, Wu S, Zheng X, Chen L, Zhang X and Jiang J: CD226 identifies functional CD8+T cells in the tumor microenvironment and predicts a better outcome for human gastric cancer. Front Immunol. 14:11508032023. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Li R, Cao Y, Gu Y, Fang H, Fei Y, Lv K, He X, Lin C, Liu H, et al: Intratumoral CXCR5+CD8+T associates with favorable clinical outcomes and immunogenic contexture in gastric cancer. Nat Commun. 12:30802021. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Liu K, Guo Q, Cheng J, Shen L, Cao Y, Wu J, Shi J, Cao H, Liu B, et al: Tumor-infiltrating immune cells and prognosis in gastric cancer: A systematic review and meta-analysis. Oncotarget. 8:62312–62329. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zheng X, Song X, Shao Y, Xu B, Chen L, Zhou Q, Hu W, Zhang D, Wu C, Tao M, et al: Prognostic role of tumor-infiltrating lymphocytes in gastric cancer: A meta-analysis. Oncotarget. 8:57386–57398. 2017. View Article : Google Scholar : PubMed/NCBI | |
Corthay A, Skovseth DK, Lundin KU, Røsjø E, Omholt H, Hofgaard PO, Haraldsen G and Bogen B: Primary antitumor immune response mediated by CD4+ T cells. Immunity. 22:371–383. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kang BW, Kim JG, Lee IH, Bae HI and Seo AN: Clinical significance of tumor-infiltrating lymphocytes for gastric cancer in the era of immunology. World J Gastrointest Oncol. 9:293–299. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vesely MD, Kershaw MH, Schreiber RD and Smyth MJ: Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 29:235–271. 2011. View Article : Google Scholar : PubMed/NCBI | |
Willimsky G and Blankenstein T: Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature. 437:141–146. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kim JK, Klinger M, Benjamin J, Xiao Y, Erle DJ, Littman DR and Killeen N: Impact of the TCR signal on regulatory T cell homeostasis, function, and trafficking. PLoS One. 4:e65802009. View Article : Google Scholar : PubMed/NCBI | |
From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR) et al., . Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke. 13:612–632. 2018.PubMed/NCBI | |
Chen T, Jin R, Huang Z, Hong W, Chen Z and Wang J: The variation of expression of CD4+ CD25+ Foxp3+ regulatory T cells in patients with Helicobacter pylori infection and eradication. Hepatogastroenterology. 61:507–511. 2014.PubMed/NCBI | |
Wu YY, Chen JH, Kao JT, Liu KC, Lai CH, Wang YM, Hsieh CT, Tzen JT and Hsu PN: Expression of CD25(high) regulatory T cells and PD-1 in gastric infiltrating CD4(+) T lymphocytes in patients with Helicobacter pylori infection. Clin Vaccine Immunol. 18:1198–1201. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lundgren A, Stromberg E, Sjoling A, Lindholm C, Enarsson K, Edebo A, Johnsson E, Suri-Payer E, Larsson P, Rudin A, et al: Mucosal FOXP3-expressing CD4+ CD25high regulatory T cells in Helicobacter pylori-infected patients. Infect Immun. 73:523–531. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang NN, Chen JN, Xiao L, Tang F, Zhang ZG, Zhang YW, Feng ZY, Jiang Y and Shao CK: Accumulation Mechanisms of CD4(+)CD25(+)FOXP3(+) Regulatory T Cells in EBV-associated gastric carcinoma. Sci Rep. 5:180572015. View Article : Google Scholar : PubMed/NCBI | |
Mizukami Y, Kono K, Kawaguchi Y, Akaike H, Kamimura K, Sugai H and Fujii H: CCL17 and CCL22 chemokines within tumor microenvironment are related to accumulation of Foxp3+ regulatory T cells in gastric cancer. Int J Cancer. 122:2286–2293. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang WW, Yuan XL, Chen H, Xie GH, Ma YH, Zheng YX, Zhou YL and Shen LS: CD19+CD24hiCD38hiBregs involved in downregulate helper T cells and upregulate regulatory T cells in gastric cancer. Oncotarget. 6:33486–33499. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hu JL, Yang Z, Tang JR, Fu XQ and Yao LJ: Effects of gastric cancer cells on the differentiation of Treg cells. Asian Pac J Cancer Prev. 14:4607–4610. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lu X, Liu J, Li H, Li W, Wang X, Ma J, Tong Q, Wu K and Wang G: Conversion of intratumoral regulatory T cells by human gastric cancer cells is dependent on transforming growth factor-β1. J Surg Oncol. 104:571–577. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yuan XL, Chen L, Zhang TT, Ma YH, Zhou YL, Zhao Y, Wang WW, Dong P, Yu L, Zhang YY and Shen LS: Gastric cancer cells induce human CD4+Foxp3+ regulatory T cells through the production of TGF-β1. World J Gastroenterol. 17:2019–2027. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nishi M, Yoshikawa K, Higashijima J, Tokunaga T, Kashihara H, Takasu C, Ishikawa D, Wada Y and Shimada M: The Impact of Indoleamine 2,3-dioxygenase (IDO) expression on stage III gastric cancer. Anticancer Res. 38:3387–3392. 2018. View Article : Google Scholar : PubMed/NCBI | |
Turnis ME, Sawant DV, Szymczak-Workman AL, Andrews LP, Delgoffe GM, Yano H, Beres AJ, Vogel P, Workman CJ and Vignali DA: Interleukin-35 limits anti-tumor immunity. Immunity. 44:316–329. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Liu J and Li J: IL-35-producing B cells in gastric cancer patients. Medicine (Baltimore). 97:e07102018. View Article : Google Scholar : PubMed/NCBI | |
Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-McCrann JM and Paulos CM: When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol. 15:458–469. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL and Kuchroo VK: Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 441:235–238. 2006. View Article : Google Scholar : PubMed/NCBI | |
Veldhoen M, Hocking RJ, Atkins CJ, Locksley RM and Stockinger B: TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity. 24:179–189. 2006. View Article : Google Scholar : PubMed/NCBI | |
Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, Berger A, Bruneval P, Fridman WH, Pagès F and Galon J: Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 71:1263–1271. 2011. View Article : Google Scholar : PubMed/NCBI | |
Horlock C, Stott B, Dyson PJ, Morishita M, Coombes RC, Savage P and Stebbing J: The effects of trastuzumab on the CD4+CD25+FoxP3+ and CD4+IL17A+ T-cell axis in patients with breast cancer. Br J Cancer. 100:1061–1067. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang B, Zhang Z, Liu W and Tan B: Targeting regulatory T cells in gastric cancer: Pathogenesis, immunotherapy, and prognosis. Biomed Pharmacother. 158:1141802023. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Chen B, Sun XX, Zhao XD, Zhao YY, Sun L, Xu CG, Shen B, Su ZL, Xu WR and Zhu W: Gastric cancer tissue-derived mesenchymal stem cells impact peripheral blood mononuclear cells via disruption of Treg/Th17 balance to promote gastric cancer progression. Exp Cell Res. 361:19–29. 2017. View Article : Google Scholar : PubMed/NCBI | |
Maruyama T, Kono K, Mizukami Y, Kawaguchi Y, Mimura K, Watanabe M, Izawa S and Fujii H: Distribution of Th17 cells and FoxP3(+) regulatory T cells in tumor-infiltrating lymphocytes, tumor-draining lymph nodes and peripheral blood lymphocytes in patients with gastric cancer. Cancer Sci. 101:1947–1954. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cao W, Cao K, Cao J, Wang Y and Shi Y: Mesenchymal stem cells and adaptive immune responses. Immunol Lett. 168:147–153. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ghannam S, Pene J, Moquet-Torcy G, Jorgensen C and Yssel H: Mesenchymal stem cells inhibit human Th17 cell differentiation and function and induce a T regulatory cell phenotype. J Immunol. 185:302–312. 2010. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Ren S, Qu X, Ge C, Cheng K and Zhao RC: Mesenchymal stem cells inhibit Th17 cells differentiation via IFN-ү-mediated SOCS3 activation. Immunol Res. 61:219–229. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lin R, Ma H, Ding Z, Shi W, Qian W, Song J and Hou X: Bone marrow-derived mesenchymal stem cells favor the immunosuppressive T cells skewing in a Helicobacter pylori model of gastric cancer. Stem Cells Dev. 22:2836–2848. 2013. View Article : Google Scholar : PubMed/NCBI | |
Okita Y, Ohira M, Tanaka H, Tokumoto M, Go Y, Sakurai K, Toyokawa T, Kubo N, Muguruma K, Sawada T, et al: Alteration of CD4 T cell subsets in metastatic lymph nodes of human gastric cancer. Oncol Rep. 34:639–647. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chen YP, Zhang Y, Lv JW, Li YQ, Wang YQ, He QM, Yang XJ, Sun Y, Mao YP, Yun JP, et al: Genomic analysis of tumor microenvironment immune types across 14 solid cancer types: Immunotherapeutic implications. Theranostics. 7:3585–3594. 2017. View Article : Google Scholar : PubMed/NCBI | |
Saito H, Kuroda H, Matsunaga T, Osaki T and Ikeguchi M: Increased PD-1 expression on CD4+ and CD8+ T cells is involved in immune evasion in gastric cancer. J Surg Oncol. 107:517–522. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Zhu Y, Jiang J, Zhao J, Zhang XG and Xu N: Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem. 108:19–24. 2006. View Article : Google Scholar : PubMed/NCBI | |
Schlosser HA, Drebber U, Kloth M, Thelen M, Rothschild SI, Haase S, Garcia-Marquez M, Wennhold K, Berlth F, Urbanski A, et al: Immune checkpoints programmed death 1 ligand 1 and cytotoxic T lymphocyte associated molecule 4 in gastric adenocarcinoma. Oncoimmunology. 5:e11007892015. View Article : Google Scholar : PubMed/NCBI | |
Marcus L, Lemery SJ, Keegan P and Pazdur R: FDA approval summary: Pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res. 25:3753–3758. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, Chung HC, Chen JS, Muro K, Kang WK, et al: Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 390:2461–2471. 2017. View Article : Google Scholar : PubMed/NCBI | |
Janjigian YY, Bendell J, Calvo E, Kim JW, Ascierto PA, Sharma P, Ott PA, Peltola K, Jaeger D, Evans J, et al: CheckMate-032 Study: Efficacy and Safety of nivolumab and nivolumab plus ipilimumab in patients with metastatic esophagogastric cancer. J Clin Oncol. 36:2836–2844. 2018. View Article : Google Scholar : PubMed/NCBI | |
Powles T, Park SH, Voog E, Caserta C, Valderrama BP, Gurney H, Kalofonos H, Radulović S, Demey W, Ullén A, et al: Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med. 383:1218–1230. 2020. View Article : Google Scholar : PubMed/NCBI | |
Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, Eder JP, Golan T, Le DT, Burtness B, et al: Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 17:717–726. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, Sun W, Jalal SI, Shah MA, Metges JP, et al: Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical KEYNOTE-059 trial. JAMA Oncol. 4:e1800132018. View Article : Google Scholar : PubMed/NCBI | |
Shitara K, Ozguroglu M, Bang YJ, Di Bartolomeo M, Mandalà M, Ryu MH, Fornaro L, Olesiński T, Caglevic C, Chung HC, et al: Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): A randomised, open-label, controlled, phase 3 trial. Lancet. 392:123–133. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shitara K, Van Cutsem E, Bang YJ, Fuchs C, Wyrwicz L, Lee KW, Kudaba I, Garrido M, Chung HC, Lee J, et al: Efficacy and safety of pembrolizumab or pembrolizumab plus chemotherapy vs chemotherapy alone for patients with first-line, advanced gastric cancer: The KEYNOTE-062 Phase 3 Randomized clinical trial. JAMA Oncol. 6:1571–1580. 2020. View Article : Google Scholar : PubMed/NCBI | |
Janjigian YY, Kawazoe A, Yañez P, Li N, Lonardi S, Kolesnik O, Barajas O, Bai Y, Shen L, Tang Y, et al: The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature. 600:727–730. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shitara K, Rha SY, Wyrwicz LS, Oshima T, Karaseva N, Osipov M, Yasui H, Yabusaki H, Afanasyev S, Park YK, et al: Neoadjuvant and adjuvant pembrolizumab plus chemotherapy in locally advanced gastric or gastro-oesophageal cancer (KEYNOTE-585): An interim analysis of the multicentre, double-blind, randomised phase 3 study. Lancet Oncol. 25:212–224. 2024. View Article : Google Scholar : PubMed/NCBI | |
An M, Mehta A, Min BH, Heo YJ, Wright SJ, Parikh M, Bi L, Lee H, Kim TJ, Lee SY, et al: Early immune remodeling steers clinical response to first-line chemoimmunotherapy in advanced gastric cancer. Cancer Discov. 14:766–785. 2024. View Article : Google Scholar : PubMed/NCBI | |
Janjigian YY, Shitara K, Moehler M, Garrido M, Salman P, Shen L, Wyrwicz L, Yamaguchi K, Skoczylas T, Campos Bragagnoli A, et al: First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet. 398:27–40. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shitara K, Ajani JA, Moehler M, Garrido M, Gallardo C, Shen L, Yamaguchi K, Wyrwicz L, Skoczylas T, Bragagnoli AC, et al: Nivolumab plus chemotherapy or ipilimumab in gastro-oesophageal cancer. Nature. 603:942–948. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kang YK, Chen LT, Ryu MH, Oh DY, Oh SC, Chung HC, Lee KW, Omori T, Shitara K, Sakuramoto S, et al: Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): A randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 23:234–247. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Jiang H, Pan Y, Gu K, Cang S, Han L, Shu Y, Li J, Zhao J, Pan H, et al: Sintilimab plus chemotherapy for unresectable gastric or gastroesophageal junction cancer: The ORIENT-16 Randomized clinical trial. JAMA. 330:2064–2074. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mimura K, Ogata T, Nguyen PHD, Roy S, Kared H, Yuan YC, Fehlings M, Yoshimoto Y, Yoshida D, Nakajima S, et al: Combination of oligo-fractionated irradiation with nivolumab can induce immune modulation in gastric cancer. J Immunother Cancer. 12:e0083852024. View Article : Google Scholar : PubMed/NCBI | |
Moehler M, Dvorkin M, Boku N, Özgüroğlu M, Ryu MH, Muntean AS, Lonardi S, Nechaeva M, Bragagnoli AC, Coşkun HS, et al: Phase III trial of avelumab maintenance after first-line induction chemotherapy versus continuation of chemotherapy in patients with gastric cancers: Results From JAVELIN Gastric 100. J Clin Oncol. 39:966–977. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bang YJ, Ruiz EY, Van Cutsem E, Lee KW, Wyrwicz L, Schenker M, Alsina M, Ryu MH, Chung HC, Evesque L, et al: Phase III, randomised trial of avelumab versus physician's choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: primary analysis of JAVELIN Gastric 300. Ann Oncol. 29:2052–2060. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kelly RJ, Lee J, Bang YJ, Almhanna K, Blum-Murphy M, Catenacci DVT, Chung HC, Wainberg ZA, Gibson MK, Lee KW, et al: Safety and efficacy of durvalumab and tremelimumab alone or in combination in patients with advanced gastric and gastroesophageal junction adenocarcinoma. Clin Cancer Res. 26:846–854. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kwon M, Kim G, Kim R, Kim KT, Kim ST, Smith S, Mortimer PGS, Hong JY, Loembé AB, Irurzun-Arana I, et al: Phase II study of ceralasertib (AZD6738) in combination with durvalumab in patients with advanced gastric cancer. J Immunother Cancer. 10:e0050412022. View Article : Google Scholar : PubMed/NCBI | |
Ali S, Kjeken R, Niederlaender C, Markey G, Saunders TS, Opsata M, Moltu K, Bremnes B, Grønevik E, Muusse M, et al: The European Medicines Agency Review of Kymriah (Tisagenlecleucel) for the treatment of acute lymphoblastic leukemia and diffuse Large B-Cell Lymphoma. Oncologist. 25:e321–e327. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qi C, Gong J, Li J, Liu D, Qin Y, Ge S, Zhang M, Peng Z, Zhou J, Cao Y, et al: Claudin18.2-specific CAR T cells in gastrointestinal cancers: Phase 1 trial interim results. Nat Med. 28:1189–1198. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Shi Z, Wang P, Wang C, Yang L, Du G, Zhang H, Shi B, Jia J, Li Q, et al: Claudin18.2-Specific chimeric antigen receptor engineered T cells for the treatment of gastric cancer. J Natl Cancer Inst. 111:409–418. 2019. View Article : Google Scholar : PubMed/NCBI | |
Botta GP, Chao J, Ma H, Hahn M, Sierra G, Jia J, Hendrix AY, Nolte Fong JV, Ween A, Vu P, et al: Metastatic gastric cancer target lesion complete response with Claudin18.2-CAR T cells. J Immunother Cancer. 12:e0079272024. View Article : Google Scholar : PubMed/NCBI | |
Vitanza NA, Johnson AJ, Wilson AL, Brown C, Yokoyama JK, Künkele A, Chang CA, Rawlings-Rhea S, Huang W, Seidel K, et al: Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: An interim analysis. Nat Med. 27:1544–1552. 2021. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Tong C, Wang Y, Gao Y, Dai H, Guo Y, Zhao X, Wang Y, Wang Z, Han W and Chen L: Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo. Protein Cell. 9:867–878. 2018. View Article : Google Scholar : PubMed/NCBI | |
Feng Z, He X, Zhang X, Wu Y, Xing B, Knowles A, Shan Q, Miller S, Hojnacki T, Ma J, et al: Potent suppression of neuroendocrine tumors and gastrointestinal cancers by CDH17CAR T cells without toxicity to normal tissues. Nat Cancer. 3:581–594. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Lv J, Zhao R, Wu Z, Zheng D, Shi J, Lin S, Wang S, Wu Q, Long Y, et al: PSCA is a target of chimeric antigen receptor T cells in gastric cancer. Biomark Res. 8:32020. View Article : Google Scholar : PubMed/NCBI | |
Qin L, Zhao R, Chen D, Wei X, Wu Q, Long Y, Jiang Z, Li Y, Wu H, Zhang X, et al: Chimeric antigen receptor T cells targeting PD-L1 suppress tumor growth. Biomark Res. 8:192020. View Article : Google Scholar : PubMed/NCBI | |
Lv J, Zhao R, Wu D, Zheng D, Wu Z, Shi J, Wei X, Wu Q, Long Y, Lin S, et al: Mesothelin is a target of chimeric antigen receptor T cells for treating gastric cancer. J Hematol Oncol. 12:182019. View Article : Google Scholar : PubMed/NCBI | |
Chan JD, Lai J, Slaney CY, Kallies A, Beavis PA and Darcy PK: Cellular networks controlling T cell persistence in adoptive cell therapy. Nat Rev Immunol. 21:769–784. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li GX, Zhao SS, Zhang XG, Wang WH, Liu J, Xue KW, Li XY, Guo YX and Wang LH: Comparison of the proliferation, cytotoxic activity and cytokine secretion function of cascade primed immune cells and cytokine-induced killer cells in vitro. Mol Med Rep. 12:2629–2635. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sun S, Li XM, Li XD and Yang WS: Studies on inducing apoptosis effects and mechanism of CIK cells for MGC-803 gastric cancer cell lines. Cancer Biother Radiopharm. 20:173–180. 2005.PubMed/NCBI | |
Chen Y, Guo ZQ, Shi CM, Zhou ZF, Ye YB and Chen Q: Efficacy of adjuvant chemotherapy combined with immunotherapy with cytokine-induced killer cells for gastric cancer after d2 gastrectomy. Int J Clin Exp Med. 8:7728–7736. 2015.PubMed/NCBI | |
Rosenberg SA, Yannelli JR, Yang JC, Topalian SL, Schwartzentruber DJ, Weber JS, Parkinson DR, Seipp CA, Einhorn JH and White DE: Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J Natl Cancer Inst. 86:1159–1166. 1994. View Article : Google Scholar : PubMed/NCBI | |
van den Berg JH, Heemskerk B, van Rooij N, Gomez-Eerland R, Michels S, van Zon M, de Boer R, Bakker NAM, Jorritsma-Smit A, van Buuren MM, et al: Tumor infiltrating lymphocytes (TIL) therapy in metastatic melanoma: Boosting of neoantigen-specific T cell reactivity and long-term follow-up. J Immunother Cancer. 8:e0008482020. View Article : Google Scholar : PubMed/NCBI | |
Barras D, Ghisoni E, Chiffelle J, Orcurto A, Dagher J, Fahr N, Benedetti F, Crespo I, Grimm AJ, Morotti M, et al: Response to tumor-infiltrating lymphocyte adoptive therapy is associated with preexisting CD8+ T-myeloid cell networks in melanoma. Sci Immunol. 9:eadg79952024. View Article : Google Scholar : PubMed/NCBI | |
Kono K, Takahashi A, Ichihara F, Amemiya H, Iizuka H, Fujii H, Sekikawa T and Matsumoto Y: Prognostic significance of adoptive immunotherapy with tumor-associated lymphocytes in patients with advanced gastric cancer: A randomized trial. Clin Cancer Res. 8:1767–1771. 2002.PubMed/NCBI | |
Amedei A, Munari F, Bella CD, Niccolai E, Benagiano M, Bencini L, Cianchi F, Farsi M, Emmi G, Zanotti G, et al: Helicobacter pylori secreted peptidyl prolyl cis, trans-isomerase drives Th17 inflammation in gastric adenocarcinoma. Intern Emerg Med. 9:303–309. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, et al: Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 363:411–422. 2010. View Article : Google Scholar : PubMed/NCBI | |
Matsueda S and Graham DY: Immunotherapy in gastric cancer. World J Gastroenterol. 20:1657–1666. 2014. View Article : Google Scholar : PubMed/NCBI | |
Masuzawa T, Fujiwara Y, Okada K, Nakamura A, Takiguchi S, Nakajima K, Miyata H, Yamasaki M, Kurokawa Y, Osawa R, et al: Phase I/II study of S-1 plus cisplatin combined with peptide vaccines for human vascular endothelial growth factor receptor 1 and 2 in patients with advanced gastric cancer. Int J Oncol. 41:1297–1304. 2012. View Article : Google Scholar : PubMed/NCBI | |
Talebi Bezmin Abadi A: Vaccine against Helicobacter pylori: Inevitable approach. World J Gastroenterol. 22:3150–3157. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, Callahan DJ, Sun Z, Sun T, Tabib T, et al: Adaptive plasticity of IL-10(+) and IL-35(+) Treg cells cooperatively promotes tumor T cell exhaustion. Nat Immunol. 20:724–735. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kumagai S, Koyama S, Itahashi K, Tanegashima T, Lin YT, Togashi Y, Kamada T, Irie T, Okumura G, Kono H, et al: Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 40:201–218.e9. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L and Chauffert B: Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother. 56:641–648. 2007. View Article : Google Scholar : PubMed/NCBI | |
Solomon I, Amann M, Goubier A, Arce Vargas F, Zervas D, Qing C, Henry JY, Ghorani E, Akarca AU, Marafioti T, et al: CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity. Nat Cancer. 1:1153–1166. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sato Y, Casson CN, Matsuda A, Kim JI, Shi JQ, Iwasaki S, Chen S, Modrell B, Chan C, Tavares D, et al: Fc-independent functions of anti-CTLA-4 antibodies contribute to anti-tumor efficacy. Cancer Immunol Immunother. 71:2421–2431. 2022. View Article : Google Scholar : PubMed/NCBI | |
Campbell JR, McDonald BR, Mesko PB, Siemers NO, Singh PB, Selby M, Sproul TW, Korman AJ, Vlach LM, Houser J, et al: Fc-Optimized Anti-CCR8 Antibody Depletes Regulatory T cells in human tumor models. Cancer Res. 81:2983–2994. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jacobs JF, Punt CJ, Lesterhuis WJ, Sutmuller RP, Brouwer HM, Scharenborg NM, Klasen IS, Hilbrands LB, Figdor CG, de Vries IJ and Adema GJ: Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: A phase I/II study in metastatic melanoma patients. Clin Cancer Res. 16:5067–5078. 2010. View Article : Google Scholar : PubMed/NCBI |