Liquid biopsy: Comprehensive overview of circulating tumor DNA (Review)
- Authors:
- Qian Ge
- Zhi-Yun Zhang
- Suo-Ni Li
- Jie-Qun Ma
- Zheng Zhao
-
Affiliations: Graduate School, Xi'an Medical University, Xi'an, Shaanxi 710000, P.R. China, Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China, Department of Internal Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710000, P.R. China - Published online on: September 13, 2024 https://doi.org/10.3892/ol.2024.14681
- Article Number: 548
-
Copyright: © Ge et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Schoop R, Roode LM, de Boer LL and Dashtbozorg B: Framework for deep learning based Multi-Modality image registration of snapshot and pathology images. IEEE J Biomed Health Inform. Aug 16–2024.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Pritzker K and Nieminen HJ: Needle biopsy adequacy in the era of precision medicine and value-based health care. Arch Pathol Lab Med. 143:1399–1415. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nikanjam M, Kato S and Kurzrock R: Liquid biopsy: Current technology and clinical applications. J Hematol Oncol. 15:1312022. View Article : Google Scholar : PubMed/NCBI | |
Tivey A, Church M, Rothwell D, Dive C and Cook N: Circulating tumour DNA-looking beyond the blood. Nat Rev Clin Oncol. 19:600–612. 2022. View Article : Google Scholar : PubMed/NCBI | |
Alix-Panabieres C and Pantel K: Liquid biopsy: From discovery to clinical application. Cancer Discov. 11:858–873. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cohen SA, Liu MC and Aleshin A: Practical recommendations for using ctDNA in clinical decision making. Nature. 619:259–268. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mandel P and Metais P: Nuclear acids in human blood plasma. C R Seances Soc Biol Fil. 142:241–243. 1948.(In French). PubMed/NCBI | |
Hobbs KJ, Cooper BL, Dembek K and Sheats MK: Investigation of extracted plasma cell-free DNA as a biomarker in foals with sepsis. Vet Sci. 11:3462024.PubMed/NCBI | |
Zhang LX, Jiang YZ, Qiu LJ and Huang DP: Quantitative detection and integrality analysis of plasma circulating Cell-free DNA in multiple myeloma. Zhongguo Shi Yan Xue Ye Xue Za Zhi. 32:1106–1111. 2024.(In Chinese). PubMed/NCBI | |
Joshi J, Raval A, Desai U, Upadhyay V, Bhavsar M, Shah K, Rawal R, Panchal H and Shah F: EGFR mutation analysis in Non-small cell lung carcinoma patients: A liquid biopsy approach. Indian J Clin Biochem. 36:51–58. 2021. View Article : Google Scholar : PubMed/NCBI | |
Volik S, Alcaide M, Morin RD and Collins C: Cell-free DNA (cfDNA): Clinical significance and utility in cancer shaped by emerging technologies. Mol Cancer Res. 14:898–908. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tan EM, Schur PH, Carr RI and Kunkel HG: Deoxybonucleic acid (DNA) and antibodies to DNA in the serum of patients with systemic lupus erythematosus. J Clin Invest. 45:1732–1740. 1966. View Article : Google Scholar : PubMed/NCBI | |
Koffler D, Agnello V, Winchester R and Kunkel HG: The occurrence of single-stranded DNA in the serum of patients with systemic lupus erythematosus and other diseases. J Clin Invest. 52:198–204. 1973. View Article : Google Scholar : PubMed/NCBI | |
Giacona MB, Ruben GC, Iczkowski KA, Roos TB, Porter DM and Sorenson GD: Cell-free DNA in human blood plasma: Length measurements in patients with pancreatic cancer and healthy controls. Pancreas. 17:89–97. 1998. View Article : Google Scholar : PubMed/NCBI | |
Szilagyi M, Pos O, Marton E, Buglyo G, Soltesz B, Keseru J, Penyige A, Szemes T and Nagy B: Circulating cell-free nucleic acids: Main characteristics and clinical application. Int J Mol Sci. 21:68272020. View Article : Google Scholar : PubMed/NCBI | |
Biro O, Fothi A, Alasztics B, Nagy B, Orban TI and Rigo JJ: Circulating exosomal and Argonaute-bound microRNAs in preeclampsia. Gene. 692:138–144. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fernando MR, Jiang C, Krzyzanowski GD and Ryan WL: New evidence that a large proportion of human blood plasma cell-free DNA is localized in exosomes. PLoS One. 12:e01839152017. View Article : Google Scholar : PubMed/NCBI | |
Aucamp J, Bronkhorst AJ, Badenhorst C and Pretorius PJ: The diverse origins of circulating cell-free DNA in the human body: A critical re-evaluation of the literature. Biol Rev Camb Philos Soc. 93:1649–1683. 2018. View Article : Google Scholar : PubMed/NCBI | |
Moss J, Magenheim J, Neiman D, Zemmour H, Loyfer N, Korach A, Samet Y, Maoz M, Druid H, Arner P, et al: Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease. Nat Commun. 9:50682018. View Article : Google Scholar : PubMed/NCBI | |
Teo YV, Capri M, Morsiani C, Pizza G, Faria A, Franceschi C and Neretti N: Cell-free DNA as a biomarker of aging. Aging Cell. 18:e128902019. View Article : Google Scholar : PubMed/NCBI | |
Hummel EM, Hessas E, Muller S, Beiter T, Fisch M, Eibl A, Wolf OT, Giebel B, Platen P, Kumsta R and Moser DA: Cell-free DNA release under psychosocial and physical stress conditions. Transl Psychiatry. 8:2362018. View Article : Google Scholar : PubMed/NCBI | |
Ai B, Liu H, Huang Y and Peng P: Circulating cell-free DNA as a prognostic and predictive biomarker in non-small cell lung cancer. Oncotarget. 7:44583–44595. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim DY, Cho EH, Kim JS, Chie EK and Kang HC: Plasma Circulating Cell-free DNa in advanced hepatocellular carcinoma patients treated with radiation therapy. In Vivo. 37:2306–2313. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gianni C, Palleschi M, Merloni F, Di Menna G, Sirico M, Sarti S, Virga A, Ulivi P, Cecconetto L, Mariotti M and De Giorgi U: Cell-Free DNA Fragmentomics: A promising biomarker for diagnosis, prognosis and prediction of response in breast cancer. Int J Mol Sci. 23:141972022. View Article : Google Scholar : PubMed/NCBI | |
Al SN, Messaoudi SA, Babu SR, Chaudhary AB, Alsharm AA, Alrefaei AF, Kadasah S, Abu-Elmagd M, Assidi M, Buhmeida A, et al: Utility of circulating Cell-free DNA in assessing microsatellite instability and loss of Heterozygosity in breast cancer using human identification approach. Genes (Basel). 13:5902022. View Article : Google Scholar | |
Bahado-Singh RO, Turkoglu O, Aydas B and Vishweswaraiah S: Precision oncology: Artificial intelligence, circulating cell-free DNA, and the minimally invasive detection of pancreatic cancer-A pilot study. Cancer Med. 12:19644–19655. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lin LH, Chang KW, Kao SY, Cheng HW and Liu CJ: Increased plasma circulating Cell-Free DNA could be a potential marker for oral cancer. Int J Mol Sci. 19:33032018. View Article : Google Scholar : PubMed/NCBI | |
Fang Q, Yuan Z, Hu H, Zhang W, Wang G and Wang X: Genome-wide discovery of circulating cell-free DNA methylation biomarkers for colorectal cancer detection. Clin Epigenetics. 15:1192023. View Article : Google Scholar : PubMed/NCBI | |
Eskander NS, Mansour L, Abdelaal A, Saad E and Mohamed D: Circulating cell free DNA integrity index as a biomarker for response to chemotherapy in patients with metastatic colorectal carcinoma. Asian Pac J Cancer Prev. 23:339–348. 2022. View Article : Google Scholar : PubMed/NCBI | |
Heidrich I and Pantel K: Liquid biopsy: Blood-based analyses of circulating cell-free DNA in xenografts. EMBO Mol Med. 14:e163262022. View Article : Google Scholar : PubMed/NCBI | |
Kroeze A, Cornelissen AS, Pascutti MF, Verheij M, Bulder I, Klarenbeek S, Ait SA, Hazenberg MD, Nur E, van der Schoot CE, et al: Cell-free DNA levels are increased in acute graft-versus-host disease. Eur J Haematol. 109:271–281. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kustanovich A, Schwartz R, Peretz T and Grinshpun A: Life and death of circulating cell-free DNA. Cancer Biol Ther. 20:1057–1067. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stewart CM and Tsui D: Circulating cell-free DNA for non-invasive cancer management. Cancer Genet. 228–229. 169–179. 2018. | |
Yu SC, Lee SW, Jiang P, Leung TY, Chan KC, Chiu RW and Lo YM: High-resolution profiling of fetal DNA clearance from maternal plasma by massively parallel sequencing. Clin Chem. 59:1228–1237. 2013. View Article : Google Scholar : PubMed/NCBI | |
Butler TM, Spellman PT and Gray J: Circulating-tumor DNA as an early detection and diagnostic tool. Curr Opin Genet Dev. 42:14–21. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD and Knippers R: DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61:1659–1665. 2001.PubMed/NCBI | |
Miller AM and Karajannis MA: Current role and future potential of CSF ctDNA for the diagnosis and clinical management of pediatric central nervous system tumors. J Natl Compr Canc Netw. 20:1363–1369. 2022.PubMed/NCBI | |
Diehl F, Schmidt K, Choti MA, Romans K, Goodman S, Li M, Thornton K, Agrawal N, Sokoll L, Szabo SA, et al: Circulating mutant DNA to assess tumor dynamics. Nat Med. 14:985–990. 2008. View Article : Google Scholar : PubMed/NCBI | |
Han JY, Ahn KS, Kim TS, Kim YH, Cho KB, Shin DW, Baek WK, Suh SI, Jang BC and Kang KJ: Liquid biopsy from Bile-Circulating tumor DNA in patients with biliary tract cancer. Cancers (Basel). 13:45812021. View Article : Google Scholar : PubMed/NCBI | |
Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, Bartlett BR, Wang H, Luber B, Alani RM, et al: Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 6:224ra242014. View Article : Google Scholar : PubMed/NCBI | |
Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, Diaz LJ, Goodman SN, David KA, Juhl H, et al: Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA. 102:16368–16373. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, Dunning MJ, Gale D, Forshew T, Mahler-Araujo B, et al: Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 368:1199–1209. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sato S, Nakamura Y, Oki E and Yoshino T: Molecular residual Disease-guided adjuvant treatment in resected colorectal cancer: Focus on CIRCULATE-Japan. Clin Colorectal Cancer. 22:53–58. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yi K, Wang X, Filippov SK and Zhang H: Emerging ctDNA detection strategies in clinical cancer theranostics. Smart Med. 2:e202300312023. View Article : Google Scholar : PubMed/NCBI | |
Cheng F, Su L and Qian C: Circulating tumor DNA: A promising biomarker in the liquid biopsy of cancer. Oncotarget. 7:48832–48841. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lee TH, Montalvo L, Chrebtow V and Busch MP: Quantitation of genomic DNA in plasma and serum samples: Higher concentrations of genomic DNA found in serum than in plasma. Transfusion. 41:276–282. 2001. View Article : Google Scholar : PubMed/NCBI | |
Heger JM, Mattlener J, Schneider J, Godel P, Sieg N, Ullrich F, Lewis RI, Bucaciuc-Mracica T, Schwarz RF, Ruess D, et al: Entirely noninvasive outcome prediction in central nervous system lymphomas using circulating tumor DNA. Blood. 143:522–534. 2023. View Article : Google Scholar | |
Werner B, Warton K and Ford CE: Transcending Blood-Opportunities for alternate liquid biopsies in oncology. Cancers (Basel). 14:13092022. View Article : Google Scholar : PubMed/NCBI | |
Seyhan AA: Circulating liquid biopsy biomarkers in glioblastoma: Advances and challenges. Int J Mol Sci. 25:79742024. View Article : Google Scholar : PubMed/NCBI | |
Zheng MM, Li YS, Jiang BY, Tu HY, Tang WF, Yang JJ, Zhang XC, Ye JY, Yan HH, Su J, et al: Clinical utility of cerebrospinal fluid Cell-Free DNA as liquid biopsy for leptomeningeal metastases in ALK-Rearranged NSCLC. J Thorac Oncol. 14:924–932. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Liu Z, Huang T, Wang Y, Song MM, Song T, Long G, Zhang X, Li X and Zhang L: Cerebrospinal fluid circulating tumor DNA depicts profiling of brain metastasis in NSCLC. Mol Oncol. 17:810–824. 2023. View Article : Google Scholar : PubMed/NCBI | |
De Mattos-Arruda L, Mayor R, Ng C, Weigelt B, Martinez-Ricarte F, Torrejon D, Oliveira M, Arias A, Raventos C, Tang J, et al: Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma. Nat Commun. 6:88392015. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Luo N, Gao Y, Wu Y, Qin X, Qi Y, Sun T, Tao R, Qi C, Liu B and Yuan S: The joint detection of CEA and ctDNA in cerebrospinal fluid: An auxiliary tool for the diagnosis of leptomeningeal metastases in cancer. J Cancer Res Clin Oncol. 149:1679–1690. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bai Y, Yu Q, Liu N, Liu J, Wang D, Liu X and Yuan S: Case report: Cerebrospinal fluid-derived circulating tumor DNA diagnoses and guides the treatment of a lung adenocarcinoma case with leptomeningeal metastasis. Front Oncol. 12:9449632022. View Article : Google Scholar : PubMed/NCBI | |
van der Wel J, Boelens MC, Jebbink M, Smulders SA, Maas KW, Luitse M, Compter A, Boltjes R, Sol N, Monkhorst K, et al: Osimertinib-induced DNA resistance mutations in cerebrospinal fluid of EGFR mutated NSCLC patients developing leptomeningeal metastases: ORA-LM study. Neuro Oncol. Aug 7–2024.doi: 10.1093/neuonc/noae138 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Azad TD, Nanjo S, Jin MC, Chabon JJ, Kurtz DM, Chaudhuri AA, Connolly ID, Hui AB, Liu CL, Merriott D, et al: Quantification of cerebrospinal fluid tumor DNA in lung cancer patients with suspected leptomeningeal carcinomatosis. NPJ Precis Oncol. 8:1212024. View Article : Google Scholar : PubMed/NCBI | |
Valerius AR, Webb MJ, Hammad N, Sener U and Malani R: Cerebrospinal fluid liquid biopsies in the evaluation of adult gliomas. Curr Oncol Rep. 26:377–390. 2024. View Article : Google Scholar : PubMed/NCBI | |
Dai L, Liu Z, Zhu Y and Ma L: Genome-wide methylation analysis of circulating tumor DNA: A new biomarker for recurrent glioblastom. Heliyon. 9:e143392023. View Article : Google Scholar : PubMed/NCBI | |
Kojic M, Maybury MK, Waddell N, Koufariotis LT, Addala V, Millar A, Wood S, Pearson JV, Hansford JR, Hassall T, et al: Efficient detection and monitoring of pediatric brain malignancies with liquid biopsy based on patient-specific somatic mutation screening. Neuro Oncol. 25:1507–1517. 2023. View Article : Google Scholar : PubMed/NCBI | |
Izquierdo E, Proszek P, Pericoli G, Temelso S, Clarke M, Carvalho DM, Mackay A, Marshall LV, Carceller F, Hargrave D, et al: Droplet digital PCR-based detection of circulating tumor DNA from pediatric high grade and diffuse midline glioma patients. Neurooncol Adv. 3:vdab0132021.PubMed/NCBI | |
Li J, Zhao S, Lee M, Yin Y, Li J, Zhou Y, Ballester LY, Esquenazi Y, Dashwood RH, Davies P, et al: Reliable tumor detection by whole-genome methylation sequencing of cell-free DNA in cerebrospinal fluid of pediatric medulloblastoma. Sci Adv. 6:eabb54272020. View Article : Google Scholar : PubMed/NCBI | |
Pages M, Rotem D, Gydush G, Reed S, Rhoades J, Ha G, Lo C, Fleharty M, Duran M, Jones R, et al: Liquid biopsy detection of genomic alterations in pediatric brain tumors from cell-free DNA in peripheral blood, CSF, and urine. Neuro Oncol. 24:1352–1363. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ding S and Song X, Geng X, Liu L, Ma H, Wang X, Wei L, Xie L and Song X: Saliva-derived cfDNA is applicable for EGFR mutation detection but not for quantitation analysis in non-small cell lung cancer. Thorac Cancer. 10:1973–1983. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zhang L, Li L, Li X, Xu Y, Wang M, Liang L, Jiao P, Li Y, He S, et al: Sputum Cell-Free DNA: Valued surrogate sample for detection of EGFR mutation in patients with advanced lung adenocarcinoma. J Mol Diagn. 22:934–942. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Li X, Zhang L, Xu Y, Wang M, Liang L, Jiao P, Li Y, He S, Du J, et al: Sputum cell-free DNA: Valued surrogate sample for the detection of EGFR exon 20 p.T790M mutation in patients with advanced lung adenocarcinoma and acquired resistance to EGFR-TKIs. Cancer Med. 10:3323–3331. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ferrier ST, Tsering T, Sadeghi N, Zeitouni A and Burnier JV: Blood and saliva-derived ctDNA is a marker of residual disease after treatment and correlates with recurrence in human papillomavirus-associated head and neck cancer. Cancer Med. 12:15777–15787. 2023. View Article : Google Scholar : PubMed/NCBI | |
Britze TE, Jakobsen KK, Gronhoj C and von Buchwald C: A systematic review on the role of biomarkers in liquid biopsies and saliva samples in the monitoring of salivary gland cancer. Acta Otolaryngol. 143:709–713. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gupta S, Singh B, Abhishek R, Gupta S and Sachan M: The emerging role of liquid biopsy in oral squamous cell carcinoma detection: Advantages and challenges. Expert Rev Mol Diagn. 24:311–331. 2024. View Article : Google Scholar : PubMed/NCBI | |
Perrone ME, Alvarez R, Vo TT, Chung MW, Chhieng DC, Paulson VA, Colbert BG, Q Konnick E and Huang EC: Validating cell-free DNA from supernatant for molecular diagnostics on cytology specimens. Cancer Cytopathol. 129:956–965. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang SR, Mooney KL, Libiran P, Jones CD, Joshi R, Lau HD, Stehr H, Berry GJ, Zehnder JL, Long SR, et al: Targeted deep sequencing of cell-free DNA in serous body cavity fluids with malignant, suspicious, and benign cytology. Cancer Cytopathol. 128:43–56. 2020. View Article : Google Scholar : PubMed/NCBI | |
Leick KM, Kazarian AG, Rajput M, Tomanek-Chalkley A, Miller A, Shrader HR, Mccarthy A, Coleman KL, Kasi PM and Chan C: Peritoneal Cell-free tumor DNA as biomarker for peritoneal surface malignancies. Ann Surg Oncol. 27:5065–5071. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kinugasa H, Nouso K, Ako S, Dohi C, Matsushita H, Matsumoto K, Kato H and Okada H: Liquid biopsy of bile for the molecular diagnosis of gallbladder cancer. Cancer Biol Ther. 19:934–938. 2018. View Article : Google Scholar : PubMed/NCBI | |
Takai E, Totoki Y, Nakamura H, Morizane C, Nara S, Hama N, Suzuki M, Furukawa E, Kato M, Hayashi H, et al: Clinical utility of circulating tumor DNA for molecular assessment in pancreatic cancer. Sci Rep. 5:184252015. View Article : Google Scholar : PubMed/NCBI | |
Levink I, Jansen M, Azmani Z, van Ijcken W, van Marion R, Peppelenbosch MP, Cahen DL, Fuhler GM and Bruno MJ: Mutation analysis of pancreatic juice and plasma for the detection of pancreatic cancer. Int J Mol Sci. 24:131162023. View Article : Google Scholar : PubMed/NCBI | |
Fitzgerald JM, Ramchurren N, Rieger K, Levesque P, Silverman M, Libertino JA and Summerhayes IC: Identification of H-ras mutations in urine sediments complements cytology in the detection of bladder tumors. J Natl Cancer Inst. 87:129–133. 1995. View Article : Google Scholar : PubMed/NCBI | |
Jain S, Lin SY, Song W and Su YH: Urine-based liquid biopsy for nonurological cancers. Genet Test Mol Biomarkers. 23:277–283. 2019. View Article : Google Scholar : PubMed/NCBI | |
Su YH, Wang M, Block TM, Landt O, Botezatu I, Serdyuk O, Lichtenstein A, Melkonyan H, Tomei LD and Umansky S: Transrenal DNA as a diagnostic tool: Important technical notes. Ann N Y Acad Sci. 1022:81–89. 2004. View Article : Google Scholar : PubMed/NCBI | |
Su YH, Wang M, Brenner DE, Norton PA and Block TM: Detection of mutated K-ras DNA in urine, plasma, and serum of patients with colorectal carcinoma or adenomatous polyps. Ann N Y Acad Sci. 1137:197–206. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xiao Y, Ju L, Qian K, Jin W, Wang G, Zhao Y, Jiang W, Liu N, Wu K, Peng M, et al: Non-invasive diagnosis and surveillance of bladder cancer with driver and passenger DNA methylation in a prospective cohort study. Clin Transl Med. 12:e10082022. View Article : Google Scholar : PubMed/NCBI | |
Christensen E, Nordentoft I, Birkenkamp-Demtroder K, Elbaek SK, Lindskrog SV, Taber A, Andreasen TG, Strandgaard T, Knudsen M, Lamy P, et al: Cell-Free urine and plasma DNA mutational analysis predicts neoadjuvant chemotherapy response and outcome in patients with muscle-invasive bladder cancer. Clin Cancer Res. 29:1582–1591. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tamura D, Abe M, Hiraki H, Sasaki N, Yashima-Abo A, Ikarashi D, Kato R, Kato Y, Maekawa S, Kanehira M, et al: Postoperative recurrence detection using individualized circulating tumor DNA in upper tract urothelial carcinoma. Cancer Sci. 115:529–539. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kim AK, Hamilton JP, Lin SY, Chang TT, Hann HW, Hu CT, Lou Y, Lin YJ, Gade TP, Park G, et al: Urine DNA biomarkers for hepatocellular carcinoma screening. Br J Cancer. 126:1432–1438. 2022. View Article : Google Scholar : PubMed/NCBI | |
Adrogue HJ and Madias NE: Assessing Acid-base status: Physiologic versus physicochemical approach. Am J Kidney Dis. 68:793–802. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dermody SM, Bhambhani C, Swiecicki PL, Brenner JC and Tewari M: Trans-renal cell-free tumor DNA for Urine-based liquid biopsy of cancer. Front Genet. 13:8791082022. View Article : Google Scholar : PubMed/NCBI | |
Alahdal M, Perera RA, Moschovas MC, Patel V and Perera RJ: Current advances of liquid biopsies in prostate cancer: Molecular biomarkers. Mol Ther Oncolytics. 30:27–38. 2023. View Article : Google Scholar : PubMed/NCBI | |
Fonseca NM, Maurice-Dror C, Herberts C, Tu W, Fan W, Murtha AJ, Kollmannsberger C, Kwan EM, Parekh K, Schonlau E, et al: Prediction of plasma ctDNA fraction and prognostic implications of liquid biopsy in advanced prostate cancer. Nat Commun. 15:18282024. View Article : Google Scholar : PubMed/NCBI | |
Tolmeijer SH, Boerrigter E, Van Erp NP and Mehra N: Using early on-treatment circulating tumor DNA measurements as response assessment in metastatic castration resistant prostate cancer. Oncotarget. 15:421–423. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ponti G, Maccaferri M, Manfredini M, Micali S, Torricelli F, Milandri R, Del PC, Ciarrocchi A, Ruini C, Benassi L, et al: Quick assessment of cell-free DNA in seminal fluid and fragment size for early non-invasive prostate cancer diagnosis. Clin Chim Acta. 497:76–80. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ponti G, Maccaferri M, Percesepe A, Tomasi A and Ozben T: Liquid biopsy with cell free DNA: New horizons for prostate cancer. Crit Rev Clin Lab Sci. 58:60–76. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu B and Ma W: Biomarker discovery in hepatocellular carcinoma (HCC) for personalized treatment and enhanced prognosis. Cytokine Growth Factor Rev. Aug 24–2024.doi: 10.1016/j.cytogfr.2024.08.006 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Xu R, Yang L, Shi W, Zhang Y, Liu J, Li X, Zhou J and Bing P: Minimal residual disease (MRD) detection in solid tumors using circulating tumor DNA: A systematic review. Front Genet. 14:11721082023. View Article : Google Scholar : PubMed/NCBI | |
Li S, Li H, Li X, Zhu M, Li H and Xia F: Hybridization Chain Reaction-amplified electrochemical DNA-based sensors enable calibration-free measurements of nucleic acids directly in whole blood. Anal Chem. 93:8354–8361. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ho HY, Chung KK, Kan CM and Wong SC: Liquid biopsy in the clinical management of cancers. Int J Mol Sci. 25:85942024. View Article : Google Scholar : PubMed/NCBI | |
Phallen J, Sausen M, Adleff V, Leal A, Hruban C, White J, Anagnostou V, Fiksel J, Cristiano S, Papp E, et al: Direct detection of early-stage cancers using circulating tumor DNA. Sci Transl Med. 9:eaan24152017. View Article : Google Scholar : PubMed/NCBI | |
Bittla P, Kaur S, Sojitra V, Zahra A, Hutchinson J, Folawemi O and Khan S: Exploring Circulating tumor DNA (CtDNA) and its role in early detection of cancer: A systematic review. Cureus. 15:e457842023.PubMed/NCBI | |
Yu W, Hurley J, Roberts D, Chakrabortty SK, Enderle D, Noerholm M, Breakefield XO and Skog JK: Exosome-based liquid biopsies in cancer: Opportunities and challenges. Ann Oncol. 32:466–477. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kemper M, Krekeler C, Menck K, Lenz G, Evers G, Schulze AB and Bleckmann A: Liquid Biopsies in Lung Cancer. Cancers (Basel). 15:14302023. View Article : Google Scholar : PubMed/NCBI | |
Lin C, Liu X, Zheng B, Ke R and Tzeng CM: Liquid biopsy, ctDNA diagnosis through NGS. Life (Basel). 11:8902021.PubMed/NCBI | |
Fernandes M, Cruz-Martins N, Souto MC, Guimaraes S, Pereira RJ, Justino A, Pina MJ, Magalhaes A, Queiroga H, Machado JC, et al: Clinical application of Next-generation sequencing of plasma Cell-free DNA for genotyping untreated advanced Non-small cell lung cancer. Cancers (Basel). 13:27072021. View Article : Google Scholar : PubMed/NCBI | |
Roberto TM, Jorge MA, Francisco GV, Noelia T, Pilar RG and Andres C: Strategies for improving detection of circulating tumor DNA using next generation sequencing. Cancer Treat Rev. 119:1025952023. View Article : Google Scholar : PubMed/NCBI | |
Grada A and Weinbrecht K: Next-generation sequencing: Methodology and application. J Invest Dermatol. 133:e112013. View Article : Google Scholar : PubMed/NCBI | |
Cheng ML, Pectasides E, Hanna GJ, Parsons HA, Choudhury AD and Oxnard GR: Circulating tumor DNA in advanced solid tumors: Clinical relevance and future directions. CA Cancer J Clin. 71:176–190. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ma M, Zhu H, Zhang C, Sun X, Gao X and Chen G: ‘Liquid biopsy’-ctDNA detection with great potential and challenges. Ann Transl Med. 3:2352015.PubMed/NCBI | |
Gale D, Lawson A, Howarth K, Madi M, Durham B, Smalley S, Calaway J, Blais S, Jones G, Clark J, et al: Development of a highly sensitive liquid biopsy platform to detect clinically-relevant cancer mutations at low allele fractions in cell-free DNA. PLoS One. 13:e01946302018. View Article : Google Scholar : PubMed/NCBI | |
Forshew T, Murtaza M, Parkinson C, Gale D, Tsui DW, Kaper F, Dawson SJ, Piskorz AM, Jimenez-Linan M, Bentley D, et al: Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 4:136ra682012. View Article : Google Scholar : PubMed/NCBI | |
Cabalag CS, Yates M, Corrales MB, Yeh P, Wong SQ, Zhang BZ, Fujihara KM, Chong L, Hii MW, Dawson SJ, et al: Potential clinical utility of a targeted circulating tumor DNA Assay in esophageal adenocarcinoma. Ann Surg. 276:e120–e126. 2022. View Article : Google Scholar : PubMed/NCBI | |
Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, et al: An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med. 20:548–554. 2014. View Article : Google Scholar : PubMed/NCBI | |
Azad TD, Chaudhuri AA, Fang P, Qiao Y, Esfahani MS, Chabon JJ, Hamilton EG, Yang YD, Lovejoy A, Newman AM, et al: Circulating tumor DNA analysis for detection of minimal residual disease after chemoradiotherapy for localized esophageal cancer. Gastroenterology. 158:494–505. 2020. View Article : Google Scholar : PubMed/NCBI | |
Noguchi T, Sakai K, Iwahashi N, Matsuda K, Matsukawa H, Yahata T, Toujima S, Nishio K and Ino K: Changes in the gene mutation profiles of circulating tumor DNA detected using CAPP-Seq in neoadjuvant chemotherapy-treated advanced ovarian cancer. Oncol Lett. 19:2713–2720. 2020.PubMed/NCBI | |
Jung D, Jain P, Yao Y and Wang M: Advances in the assessment of minimal residual disease in mantle cell lymphoma. J Hematol Oncol. 13:1272020. View Article : Google Scholar : PubMed/NCBI | |
Satyal U, Srivastava A and Abbosh PH: Urine biopsy-liquid gold for molecular detection and surveillance of bladder cancer. Front Oncol. 9:12662019. View Article : Google Scholar : PubMed/NCBI | |
Taylor K, Zou J, Magalhaes M, Oliva M, Spreafico A, Hansen AR, Mcdade SS, Coyle VM, Lawler M, Elimova E, et al: Circulating tumour DNA kinetics in recurrent/metastatic head and neck squamous cell cancer patients. Eur J Cancer. 188:29–38. 2023. View Article : Google Scholar : PubMed/NCBI | |
Aoude LG, Brosda S, Ng J, Lonie JM, Belle CJ, Patel K, Koufariotis LT, Wood S, Atkinson V, Smithers BM, et al: Circulating tumor DNA: A promising biomarker for predicting recurrence in patients with BRAF-Negative melanoma. J Mol Diagn. 25:771–781. 2023. View Article : Google Scholar : PubMed/NCBI | |
Grassi T, Harris FR, Smadbeck JB, Murphy SJ, Block MS, Multinu F, Schaefer KJ, Zhang P, Karagouga G, Liu MC, et al: Personalized tumor-specific DNA junctions to detect circulating tumor in patients with endometrial cancer. PLoS One. 16:e02523902021. View Article : Google Scholar : PubMed/NCBI | |
Mansson CT, Vad-Nielsen J, Meldgaard P, Nielsen AL and Sorensen BS: EGFR transcription in non-small-cell lung cancer tumours can be revealed in ctDNA by cell-free chromatin immunoprecipitation (cfChIP). Mol Oncol. 15:2868–2876. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jafri H, Mushtaq S, Baig S, Bhatty A and Siraj S: Comparison of KRAS gene in circulating tumor DNA levels vs histological grading of colorectal cancer patients through liquid biopsy. Saudi J Gastroenterol. 29:371–375. 2023. View Article : Google Scholar : PubMed/NCBI | |
FDA, . Summary of Safety and Effectiveness Data (SSED) P150047. Cobas EGFR Mutation Test v2®. 2016. | |
Biglari N, Soltani-Zangbar MS, Mohammadian J, Mehdizadeh A and Abbasi K: ctDNA as a novel and promising approach for cancer diagnosis: A focus on hepatocellular carcinoma. EXCLI J. 22:752–780. 2023.PubMed/NCBI | |
Hickman RA, Miller AM and Arcila ME: Cerebrospinal fluid: A unique source of circulating tumor DNA with broad clinical applications. Transl Oncol. 33:1016882023. View Article : Google Scholar : PubMed/NCBI | |
Rimelen V, Ahle G, Pencreach E, Zinniger N, Debliquis A, Zalmai L, Harzallah I, Hurstel R, Alamome I, Lamy F, et al: Tumor cell-free DNA detection in CSF for primary CNS lymphoma diagnosis. Acta Neuropathol Commun. 7:432019. View Article : Google Scholar : PubMed/NCBI | |
Venetis K, Pepe F, Pescia C, Cursano G, Criscitiello C, Frascarelli C, Mane E, Russo G, Taurelli SB, Troncone G, et al: ESR1 mutations in HR+/HER2-metastatic breast cancer: Enhancing the accuracy of ctDNA testing. Cancer Treat Rev. 121:1026422023. View Article : Google Scholar : PubMed/NCBI | |
Teh SY, Lin R, Hung LH and Lee AP: Droplet microfluidics. Lab Chip. 8:198–220. 2008. View Article : Google Scholar : PubMed/NCBI | |
Taniguchi K, Uchida J, Nishino K, Kumagai T, Okuyama T, Okami J, Higashiyama M, Kodama K, Imamura F and Kato K: Quantitative detection of EGFR mutations in circulating tumor DNA derived from lung adenocarcinomas. Clin Cancer Res. 17:7808–7815. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fang J, Yuan C, Luo X, He Z and Fu W: A Thermus thermophilus argonaute-coupling exponential amplification assay for ultrarapid analysis of circulating tumor DNA. Talanta. 266:1250342024. View Article : Google Scholar : PubMed/NCBI | |
Cappello F, Angerilli V, Munari G, Ceccon C, Sabbadin M, Pagni F, Fusco N, Malapelle U and Fassan M: FFPE-Based NGS approaches into clinical practice: The limits of glory from a pathologist viewpoint. J Pers Med. 12:1026422022. View Article : Google Scholar | |
Mantilla WA, Sanabria-Salas MC, Baldion AM, Sua LF, Gonzalez DM and Lema M: NGS in lung, breast, and unknown primary cancer in colombia: A multidisciplinary consensus on challenges and opportunities. JCO Glob Oncol. 7:1012–1023. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lin YH, Liao XJ, Chang W and Chiou CC: Ultrafast DNA amplification using microchannel Flow-through PCR device. Biosensors (Basel). 12:3032022. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Han X, Xu W, Liu J, Zhu A, Song D and Long F: Development of a hybridization chain reaction-powered lab-on-fiber device for ultrafast point-of-care testing of circulating tuor DNA in whole blood. Talanta. 259:1244752023. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Lv J, Zheng X and Wu ZS: Hybridization chain reaction and its applications in biosensing. Talanta. 234:1226372021. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Shim JS, Han BH, Kim HJ, Park J, Cho IJ, Kang SG, Kang JY, Bong KW and Choi N: Hydrogel-based hybridization chain reaction (HCR) for detection of urinary exosomal miRNAs as a diagnostic tool of prostate cancer. Biosens Bioelectron. 192:1135042021. View Article : Google Scholar : PubMed/NCBI | |
Papakonstantinou A, Gonzalez NS, Pimentel I, Sunol A, Zamora E, Ortiz C, Espinosa-Bravo M, Peg V, Vivancos A, Saura C, et al: Prognostic value of ctDNA detection in patients with early breast cancer undergoing neoadjuvant therapy: A systematic review and meta-analysis. Cancer Treat Rev. 104:1023622022. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Zhao P, Lu T, Ren J, Zhu L, Han X, Zhang G, Dong X, Ma H, Yu M and Cai H: ctDNA as a prognostic biomarker in resectable CLM: Systematic review and meta-analysis. Open Life Sci. 18:202206152023. View Article : Google Scholar : PubMed/NCBI | |
Wei J, Feng J, Weng Y, Xu Z, Jin Y, Wang P, Cui X, Ruan P, Luo R, Li N and Peng M: The prognostic value of ctDNA and bTMB on immune checkpoint inhibitors in human cancer. Front Oncol. 11:7069102021. View Article : Google Scholar : PubMed/NCBI | |
Markou A, Tzanikou E and Lianidou E: The potential of liquid biopsy in the management of cancer patients. Semin Cancer Biol. 84:69–79. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bratman SV, Yang S, Iafolla M, Liu Z, Hansen AR, Bedard PL, Lheureux S, Spreafico A, Razak AA, Shchegrova S, et al: Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat Cancer. 1:873–881. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gale D, Heider K, Ruiz-Valdepenas A, Hackinger S, Perry M, Marsico G, Rundell V, Wulff J, Sharma G, Knock H, et al: Residual ctDNA after treatment predicts early relapse in patients with early-stage non-small cell lung cancer. Ann Oncol. 33:500–510. 2022. View Article : Google Scholar : PubMed/NCBI | |
Borcoman E, Kanjanapan Y, Champiat S, Kato S, Servois V, Kurzrock R, Goel S, Bedard P and Le Tourneau C: Novel patterns of response under immunotherapy. Ann Oncol. 30:385–396. 2019. View Article : Google Scholar : PubMed/NCBI | |
Young JS, Al-Adli N, Scotford K, Cha S and Berger MS: Pseudoprogression versus true progression in glioblastoma: What neurosurgeons need to know. J Neurosurg. 139:748–759. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zheng J, Zhou X, Fu Y and Chen Q: Advances in the study of hyperprogression of different tumors treated with PD-1/PD-L1 antibody and the mechanisms of its occurrence. Cancers (Basel). 15:13142023. View Article : Google Scholar : PubMed/NCBI | |
Vellanki PJ, Ghosh S, Pathak A, Fusco MJ, Bloomquist EW, Tang S, Singh H, Philip R, Pazdur R and Beaver JA: Regulatory implications of ctDNA in Immuno-oncology for solid tumors. J Immunother Cancer. 11:e0053442023. View Article : Google Scholar : PubMed/NCBI | |
Mahuron KM and Fong Y: Applications of liquid biopsy for surgical patients with cancer: A review. JAMA Surg. 159:96–103. 2024. View Article : Google Scholar : PubMed/NCBI | |
Juarez-Avendano G, Mendez-Ramirez N, Luna-Silva NC, Gomez-Almaguer D, Pelayo R and Balandran JC: Molecular and cellular markers for measurable residual disease in acute lymphoblastic leukemia. Bol Med Hosp Infant Mex. 78:159–170. 2021.PubMed/NCBI | |
Li Y, Solis-Ruiz J, Yang F, Long N, Tong CH, Lacbawan FL, Racke FK and Press RD: NGS-defined measurable residual disease (MRD) after initial chemotherapy as a prognostic biomarker for acute myeloid leukemia. Blood Cancer J. 13:592023. View Article : Google Scholar : PubMed/NCBI | |
Gutman JA, Winters A, Kent A, Amaya M, Mcmahon C, Smith C, Jordan CT, Stevens B, Minhajuddin M, Pei S, et al: Higher-dose venetoclax with measurable residual disease-guided azacitidine discontinuation in newly diagnosed acute myeloid leukemia. Haematologica. 108:2616–2625. 2023. View Article : Google Scholar : PubMed/NCBI | |
Munir T, Cairns DA, Bloor A, Allsup D, Cwynarski K, Pettitt A, Paneesha S, Fox CP, Eyre TA, Forconi F, et al: Chronic lymphocytic leukemia therapy guided by measurable residual disease. N Engl J Med. 390:326–337. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhang JT, Liu SY, Gao W, Liu SM, Yan HH, Ji L, Chen Y, Gong Y, Lu HL, Lin JT, et al: Longitudinal undetectable molecular residual disease defines potentially cured population in localized non-small cell lung cancer. Cancer Discov. 12:1690–1701. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jung HA, Ku BM, Kim YJ, Park S, Sun JM, Lee SH, Ahn JS, Cho JH, Kim HK, Choi YS, et al: Longitudinal monitoring of circulating tumor DNA from plasma in patients with curative resected Stages I to IIIA EGFR-Mutant Non-Small cell lung cancer. J Thorac Oncol. 18:1199–1208. 2023. View Article : Google Scholar : PubMed/NCBI | |
Costa LJ, Chhabra S, Medvedova E, Dholaria BR, Schmidt TM, Godby KN, Silbermann R, Dhakal B, Bal S, Giri S, et al: Daratumumab, Carfilzomib, Lenalidomide, and dexamethasone with minimal residual disease Response-Adapted therapy in newly diagnosed multiple myeloma. J Clin Oncol. 40:2901–2912. 2022. View Article : Google Scholar : PubMed/NCBI | |
San-Miguel J, Avet-Loiseau H, Paiva B, Kumar S, Dimopoulos MA, Facon T, Mateos MV, Touzeau C, Jakubowiak A, Usmani SZ, et al: Sustained minimal residual disease negativity in newly diagnosed multiple myeloma and the impact of daratumumab in MAIA and ALCYONE. Blood. 139:492–501. 2022. View Article : Google Scholar : PubMed/NCBI | |
Costa LJ, Chhabra S, Medvedova E, Dholaria BR, Schmidt TM, Godby KN, Silbermann R, Dhakal B, Bal S, Giri S, et al: Minimal residual disease response-adapted therapy in newly diagnosed multiple myeloma (MASTER): Final report of the multicentre, single-arm, phase 2 trial. Lancet Haematol. 10:e890–e901. 2023. View Article : Google Scholar : PubMed/NCBI | |
D'Agostino M, Bertuglia G, Rota-Scalabrini D, Belotti A, More S, Corradini P, Oliva S, Ledda A, Grasso M, Pavone V, et al: Predictors of unsustained minimal residual disease negativity in multiple myeloma (MM) Patients. Blood. 1432023.doi:10.1182/blood.2023022080. | |
Medford AJ, Moy B, Spring LM, Hurvitz SA, Turner NC and Bardia A: Molecular residual disease in breast cancer: Detection and therapeutic interception. Clin Cancer Res. 29:4540–4548. 2023. View Article : Google Scholar : PubMed/NCBI | |
Patel RP, Somasundram PM, Smith LK, Sheppard KE and Mcarthur GA: The therapeutic potential of targeting minimal residual disease in melanoma. Clin Transl Med. 13:e11972023. View Article : Google Scholar : PubMed/NCBI | |
Honore N, van Marcke C, Galot R, Helaers R, Ambroise J, van Maanen A, Mendola A, Dahou H, Marbaix E, Van Eeckhout P, et al: Tumor-agnostic plasma assay for circulating tumor DNA detects minimal residual disease and predicts outcome in locally advanced squamous cell carcinoma of the head and neck. Ann Oncol. 34:1175–1186. 2023. View Article : Google Scholar : PubMed/NCBI | |
Pott C, Jurinovic V, Trotman J, Kehden B, Unterhalt M, Herold M, Jagt RV, Janssens A, Kneba M, Mayer J, et al: Minimal residual disease status predicts outcome in patients with previously untreated follicular lymphoma: A prospective analysis of the Phase III GALLIUM study. J Clin Oncol. 42:550–561. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Hu H, Wu J, Wang H, Guo Z, Yu W, Yao L, Ding F, Zhou T, Wang W, et al: Letter to the Editor: Clinical utility of urine DNA for noninvasive detection and minimal residual disease monitoring in urothelial carcinoma. Mol Cancer. 22:252023. View Article : Google Scholar : PubMed/NCBI | |
Mo S, Ye L, Wang D, Han L, Zhou S, Wang H, Dai W, Wang Y, Luo W, Wang R, et al: Early detection of molecular residual disease and risk stratification for stage I to III colorectal cancer via circulating tumor DNA Methylation. JAMA Oncol. 9:770–778. 2023. View Article : Google Scholar : PubMed/NCBI | |
Slater S, Bryant A, Chen HC, Begum R, Rana I, Aresu M, Peckitt C, Zhitkov O, Lazaro-Alcausi R, Borja V, et al: ctDNA guided adjuvant chemotherapy versus standard of care adjuvant chemotherapy after curative surgery in patients with high risk stage II or stage III colorectal cancer: A multi-centre, prospective, randomised control trial (TRACC Part C). BMC Cancer. 23:2572023. View Article : Google Scholar : PubMed/NCBI | |
Armakolas A, Kotsari M and Koskinas J: Liquid biopsies, novel approaches and future directions. Cancers (Basel). 15:15792023. View Article : Google Scholar : PubMed/NCBI | |
Xie J, Yao W, Chen L, Zhu W, Liu Q, Geng G, Fang J, Zhao Y, Xiao L, Huang Z and Zhao J: Plasma ctDNA increases tissue NGS-based detection of therapeutically targetable mutations in lung cancers. BMC Cancer. 23:2942023. View Article : Google Scholar : PubMed/NCBI |