1
|
Arnold M, Morgan E, Rumgay H, Mafra A,
Singh D, Laversanne M, Vignat J, Gralow JR, Cardoso F, Siesling S
and Soerjomataram I: Current and future burden of breast cancer:
Global statistics for 2020 and 2040. Breast. 66:15–23. 2022.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Cancer Genome Atlas Network, .
Comprehensive molecular portraits of human breast tumours. Nature.
490:61–70. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lehmann BD, Bauer JA, Chen X, Sanders ME,
Chakravarthy AB, Shyr Y and Pietenpol JA: Identification of human
triple-negative breast cancer subtypes and preclinical models for
selection of targeted therapies. J Clin Invest. 121:2750–2767.
2011. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Masuda H, Baggerly KA, Wang Y, Zhang Y,
Gonzalez-Angulo AM, Meric-Bernstam F, Valero V, Lehmann BD,
Pietenpol JA, Hortobagyi GN, et al: Differential response to
neoadjuvant chemotherapy among 7 triple-negative breast cancer
molecular subtypes. Clin Cancer Res. 19:5533–5540. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Brouckaert O, Wildiers H, Floris G and
Neven P: Update on triple-negative breast cancer: Prognosis and
management strategies. Int J Womens Health. 4:511–520.
2012.PubMed/NCBI
|
6
|
Zhu X, Chen L, Huang B, Li X, Yang L, Hu
X, Jiang Y, Shao Z and Wang Z: Efficacy and mechanism of the
combination of PARP and CDK4/6 inhibitors in the treatment of
triple-negative breast cancer. J Exp Clin Cancer Res. 40:1222021.
View Article : Google Scholar : PubMed/NCBI
|
7
|
de Groot AF, Kuijpers CJ and Kroep JR:
CDK4/6 inhibition in early and metastatic breast cancer: A review.
Cancer Treat Rev. 60:130–138. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Sherr CJ, Beach D and Shapiro GI:
Targeting CDK4 and CDK6: From discovery to therapy. Cancer Discov.
6:353–367. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
O'Leary B, Finn RS and Turner NC: Treating
cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol.
13:417–430. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kim ES: Abemaciclib: First global
approval. Drugs. 77:2063–2070. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Johnston SRD, Toi M, O'Shaughnessy J,
Rastogi P, Campone M, Neven P, Huang CS, Huober J, Jaliffe GG,
Cicin I, et al: Abemaciclib plus endocrine therapy for hormone
receptor-positive, HER2-negative, node-positive, high-risk early
breast cancer (monarchE): Results from a preplanned interim
analysis of a randomised, open-label, phase 3 trial. Lancet Oncol.
24:77–90. 2023. View Article : Google Scholar : PubMed/NCBI
|
12
|
Messina C, Cattrini C, Buzzatti G, Cerbone
L, Zanardi E, Messina M and Boccardo F: CDK4/6 inhibitors in
advanced hormone receptor-positive/HER2-negative breast cancer: A
systematic review and meta-analysis of randomized trials. Breast
Cancer Res Treat. 172:9–21. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Asghar US, Barr AR, Cutts R, Beaney M,
Babina I, Sampath D, Giltnane J, Lacap JA, Crocker L, Young A, et
al: Single-cell dynamics determines response to CDK4/6 inhibition
in triple-negative breast cancer. Clin Cancer Res. 23:5561–5572.
2017. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kettner NM, Vijayaraghavan S, Durak MG,
Bui T, Kohansal M, Ha MJ, Liu B, Rao X, Wang J, Yi M, et al:
Combined inhibition of STAT3 and DNA repair in
palbociclib-resistant ER-positive breast cancer. Clin Cancer Res.
25:3996–4013. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Herrera-Abreu MT, Palafox M, Asghar U,
Rivas MA, Cutts RJ, Garcia-Murillas I, Pearson A, Guzman M,
Rodriguez O, Grueso J, et al: Early adaptation and acquired
resistance to CDK4/6 inhibition in estrogen receptor-positive
breast cancer. Cancer Res. 76:2301–2313. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Yang C, Li Z, Bhatt T, Dickler M, Giri D,
Scaltriti M, Baselga J, Rosen N and Chandarlapaty S: Acquired CDK6
amplification promotes breast cancer resistance to CDK4/6
inhibitors and loss of ER signaling and dependence. Oncogene.
36:2255–2264. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Min A, Kim JE, Kim YJ, Lim JM, Kim S, Kim
JW, Lee KH, Kim TY, Oh DY, Bang YJ and Im SA: Cyclin E
overexpression confers resistance to the CDK4/6 specific inhibitor
palbociclib in gastric cancer cells. Cancer Lett. 430:123–132.
2018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pandey K, An HJ, Kim SK, Lee SA, Kim S,
Lim SM, Kim GM, Sohn J and Moon YW: Molecular mechanisms of
resistance to CDK4/6 inhibitors in breast cancer: A review. Int J
Cancer. 145:1179–1188. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Huang J, Zheng L, Sun Z and Li J: CDK4/6
inhibitor resistance mechanisms and treatment strategies (review).
Int J Mol Med. 50:1282022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Álvarez-Fernández M and Malumbres M:
Mechanisms of sensitivity and resistance to CDK4/6 inhibition.
Cancer Cell. 37:514–529. 2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Portman N, Alexandrou S, Carson E, Wang S,
Lim E and Caldon CE: Overcoming CDK4/6 inhibitor resistance in
ER-positive breast cancer. Endocr Relat Cancer. 26:R15–R30. 2019.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Cetin B, Wabl CA and Gumusay O: CDK4/6
inhibitors: Mechanisms of resistance and potential biomarkers of
responsiveness in breast cancer. Future Oncol. 18:1143–1157. 2022.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Leslie K, Lang C, Devgan G, Azare J,
Berishaj M, Gerald W, Kim YB, Paz K, Darnell JE, Albanese C, et al:
Cyclin D1 is transcriptionally regulated by and required for
transformation by activated signal transducer and activator of
transcription 3. Cancer Res. 66:2544–2552. 2006. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mullany LK, Nelsen CJ, Hanse EA, Goggin
MM, Anttila CK, Peterson M, Bitterman PB, Raghavan A, Crary GS and
Albrecht JH: Akt-mediated liver growth promotes induction of cyclin
E through a novel translational mechanism and a p21-mediated cell
cycle arrest. J Biol Chem. 282:21244–21252. 2007. View Article : Google Scholar : PubMed/NCBI
|
25
|
Mirza AM, Gysin S, Malek N, Nakayama K,
Roberts JM and McMahon M: Cooperative regulation of the cell
division cycle by the protein kinases RAF and AKT. Mol Cell Biol.
24:10868–10881. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hartman ZC, Poage GM, den Hollander P,
Tsimelzon A, Hill J, Panupinthu N, Zhang Y, Mazumdar A, Hilsenbeck
SG, Mills GB and Brown PH: Growth of triple-negative breast cancer
cells relies upon coordinate autocrine expression of the
proinflammatory cytokines IL-6 and IL-8. Cancer Res. 73:3470–3480.
2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Bachelot T, Ray-Coquard I, Menetrier-Caux
C, Rastkha M, Duc A and Blay JY: Prognostic value of serum levels
of interleukin 6 and of serum and plasma levels of vascular
endothelial growth factor in hormone-refractory metastatic breast
cancer patients. Br J Cancer. 88:1721–1726. 2003. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang R, Wang T and Lin J: Synergistic
effect of bazedoxifene and PARP inhibitor in the treatment of
ovarian cancer regardless of BRCA mutation. Anticancer Res.
41:2277–2286. 2021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Garcia-Tuñón I, Ricote M, Ruiz A, Fraile
B, Paniagua R and Royuela M: IL-6, its receptors and its
relationship with bcl-2 and bax proteins in infiltrating and in
situ human breast carcinoma. Histopathology. 47:82–89. 2005.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Kim G, Ouzounova M, Quraishi AA, Davis A,
Tawakkol N, Clouthier SG, Malik F, Paulson AK, D'Angelo RC, Korkaya
S, et al: SOCS3-mediated regulation of inflammatory cytokines in
PTEN and p53 inactivated triple negative breast cancer model.
Oncogene. 34:671–680. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang K, Zhu X, Zhang K, Yin Y, Chen Y and
Zhang T: Interleukin-6 contributes to chemoresistance in MDA-MB-231
cells via targeting HIF-1α. J Biochem Mol Toxicol. 32:e220392018.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Li H, Xiao H, Lin L, Jou D, Kumari V, Lin
J and Li C: Drug design targeting protein-protein interactions
(PPIs) using multiple ligand simultaneous docking (MLSD) and drug
repositioning: Discovery of raloxifene and bazedoxifene as novel
inhibitors of IL-6/GP130 interface. J Med Chem. 57:632–641. 2014.
View Article : Google Scholar : PubMed/NCBI
|
33
|
de Villiers TJ, Chines AA, Palacios S,
Lips P, Sawicki AZ, Levine AB, Codreanu C, Kelepouris N and Brown
JP: Safety and tolerability of bazedoxifene in postmenopausal women
with osteoporosis: Results of a 5-year, randomized,
placebo-controlled phase 3 trial. Osteoporos Int. 22:567–576. 2011.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Archer DF, Pinkerton JV, Utian WH,
Menegoci JC, de Villiers TJ, Yuen CK, Levine AB, Chines AA and
Constantine GD: Bazedoxifene, a selective estrogen receptor
modulator: Effects on the endometrium, ovaries, and breast from a
randomized controlled trial in osteoporotic postmenopausal women.
Menopause. 16:1109–1115. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Palacios S, de Villiers TJ, Nardone Fde C,
Levine AB, Williams R, Hines T, Mirkin S and Chines AA; BZA Study
Group, : Assessment of the safety of long-term bazedoxifene
treatment on the reproductive tract in postmenopausal women with
osteoporosis: Results of a 7-year, randomized, placebo-controlled,
phase 3 study. Maturitas. 76:81–87. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chou TC: Theoretical basis, experimental
design, and computerized simulation of synergism and antagonism in
drug combination studies. Pharmacol Rev. 58:621–681. 2006.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Konecny GE, Winterhoff B, Kolarova T, Qi
J, Manivong K, Dering J, Yang G, Chalukya M, Wang HJ, Anderson L,
et al: Expression of p16 and retinoblastoma determines response to
CDK4/6 inhibition in ovarian cancer. Clin Cancer Res. 17:1591–1602.
2011. View Article : Google Scholar : PubMed/NCBI
|
38
|
Brough R, Gulati A, Haider S, Kumar R,
Campbell J, Knudsen E, Pettitt SJ, Ryan CJ and Lord CJ:
Identification of highly penetrant Rb-related synthetic lethal
interactions in triple negative breast cancer. Oncogene.
37:5701–5718. 2018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chou TC: Drug combination studies and
their synergy quantification using the Chou-Talalay method. Cancer
Res. 70:440–446. 2010. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hu Y, Gao J, Wang M and Li M: Potential
prospect of CDK4/6 inhibitors in triple-negative breast cancer.
Cancer Manag Res. 13:5223–5237. 2021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Cejuela M, Gil-Torralvo A, Castilla MÁ,
Domínguez-Cejudo MÁ, Falcón A, Benavent M, Molina-Pinelo S,
Ruiz-Borrego M and Salvador Bofill J: Abemaciclib, palbociclib, and
ribociclib in real-world data: A direct comparison of first-line
treatment for endocrine-receptor-positive metastatic breast cancer.
Int J Mol Sci. 24:84882023. View Article : Google Scholar : PubMed/NCBI
|
42
|
Thilakasiri P, Huynh J, Poh AR, Tan CW,
Nero TL, Tran K, Parslow AC, Afshar-Sterle S, Baloyan D, Hannan NJ,
et al: Repurposing the selective estrogen receptor modulator
bazedoxifene to suppress gastrointestinal cancer growth. EMBO Mol
Med. 11:e95392019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yadav A, Kumar B, Teknos TN and Kumar P:
Bazedoxifene enhances the anti-tumor effects of cisplatin and
radiation treatment by blocking IL-6 signaling in head and neck
cancer. Oncotarget. 8:66912–66924. 2016. View Article : Google Scholar : PubMed/NCBI
|
44
|
Xiao H, Bid HK, Chen X, Wu X, Wei J, Bian
Y, Zhao C, Li H, Li C and Lin J: Repositioning bazedoxifene as a
novel IL-6/GP130 signaling antagonist for human rhabdomyosarcoma
therapy. PLoS One. 12:e01802972017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ma H, Yan D, Wang Y, Shi W, Liu T, Zhao C,
Huo S, Duan J, Tao J, Zhai M, et al: Bazedoxifene exhibits growth
suppressive activity by targeting interleukin-6/glycoprotein
130/signal transducer and activator of transcription 3 signaling in
hepatocellular carcinoma. Cancer Sci. 110:950–961. 2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wei J, Ma L, Lai YH, Zhang R, Li H, Li C
and Lin J: Bazedoxifene as a novel GP130 inhibitor for Colon Cancer
therapy. J Exp Clin Cancer Res. 38:632019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kim L, Park SA, Park H, Kim H and Heo TH:
Bazedoxifene, a GP130 inhibitor, modulates EMT signaling and
exhibits antitumor effects in HPV-positive cervical cancer. Int J
Mol Sci. 22:86932021. View Article : Google Scholar : PubMed/NCBI
|
48
|
Wu X, Cao Y, Xiao H, Li C and Lin J:
Bazedoxifene as a novel GP130 inhibitor for pancreatic cancer
therapy. Mol Cancer Ther. 15:2609–2619. 2016. View Article : Google Scholar : PubMed/NCBI
|
49
|
Park SA, Kim LK, Park HM, Kim HJ and Heo
TH: Inhibition of GP130/STAT3 and EMT by combined bazedoxifene and
paclitaxel treatment in ovarian cancer. Oncol Rep. 47:522022.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Tian J, Chen X, Fu S, Zhang R, Pan L, Cao
Y, Wu X, Xiao H, Lin HJ, Lo HW, et al: Bazedoxifene is a novel
IL-6/GP130 inhibitor for treating triple-negative breast cancer.
Breast Cancer Res Treat. 175:553–566. 2019. View Article : Google Scholar : PubMed/NCBI
|
51
|
Fu S, Chen X, Lo HW and Lin J: Combined
bazedoxifene and paclitaxel treatments inhibit cell viability, cell
migration, colony formation, and tumor growth and induce apoptosis
in breast cancer. Cancer Lett. 448:11–19. 2019. View Article : Google Scholar : PubMed/NCBI
|
52
|
Damodaran S, O'Sullivan CC, Elkhanany A,
Anderson IC, Barve M, Blau S, Cherian MA, Peguero JA, Goetz MP,
Plourde PV, et al: Open-label, phase II, multicenter study of
lasofoxifene plus abemaciclib for treating women with metastatic
ER+/HER2-breast cancer and an ESR1 mutation after disease
progression on prior therapies: ELAINE 2. Ann Oncol. 34:1131–1140.
2023. View Article : Google Scholar : PubMed/NCBI
|