1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Llovet JM, Kelley RK, Villanueva A, Singal
AG, Pikarsky E, Roayaie S, Lencioni R, Koike K, Zucman-Rossi J and
Finn RS: Hepatocellular carcinoma. Nat Rev Dis Primers. 7:62021.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Villanueva A: Hepatocellular carcinoma. N
Engl J Med. 380:1450–1462. 2019. View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang CH, Cheng Y, Zhang S, Fan J and Gao
Q: Changing epidemiology of hepatocellular carcinoma in Asia. Liver
Int. 42:2029–2041. 2022. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lim CJ, Lee YH, Pan L, Lai L, Chua C,
Wasser M, Lim TKH, Yeong J, Toh HC, Lee SY, et al: Multidimensional
analyses reveal distinct immune microenvironment in hepatitis B
virus-related hepatocellular carcinoma. Gut. 68:916–927. 2019.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Song G, Shi Y, Zhang M, Goswami S, Afridi
S, Meng L, Ma J, Chen Y, Lin Y, Zhang J, et al: Global immune
characterization of HBV/HCV-related hepatocellular carcinoma
identifies macrophage and T-cell subsets associated with disease
progression. Cell Discov. 6:902020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang S, Gao S, Zhao M, Liu Y, Bu Y, Jiang
Q, Zhao Q, Ye L and Zhang X: Anti-HBV drugs suppress the growth of
HBV-related hepatoma cells via down-regulation of hepatitis B virus
X protein. Cancer Lett. 392:94–104. 2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yeh ML, Liang PC, Tsai PC, Wang SC, Leong
J, Ogawa E, Jun DW, Tseng CH, Landis C, Tanaka Y, et al:
Characteristics and survival outcomes of hepatocellular carcinoma
developed after HCV SVR. Cancers (Basel). 13:34552021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wang SH, Yeh SH and Chen PJ: Unique
features of hepatitis B virus-related hepatocellular carcinoma in
pathogenesis and clinical significance. Cancers (Basel).
13:24542021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Holinstat M: Normal platelet function.
Cancer metastasis Rev. 36:195–198. 2017. View Article : Google Scholar : PubMed/NCBI
|
11
|
Haemmerle M, Stone RL, Menter DG,
Afshar-Kharghan V and Sood AK: The platelet lifeline to cancer:
Challenges and opportunities. Cancer Cell. 33:965–983. 2018.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Ramadori P, Klag T, Malek NP and
Heikenwalder M: Platelets in chronic liver disease, from bench to
bedside. JHEP Rep. 1:448–459. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Scheiner B, Kirstein M, Popp S, Hucke F,
Bota S, Rohr-Udilova N, Reiberger T, Müller C, Trauner M,
Peck-Radosavljevic M, et al: Association of platelet count and mean
platelet volume with overall survival in patients with cirrhosis
and unresectable hepatocellular carcinoma. Liver Cancer. 8:203–217.
2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Wang B, Zhu J, Ma X, Wang H, Qiu S, Pan B,
Zhou J, Fan J, Yang X, Guo W and Cheng Y: Platelet activation
status in the diagnosis and postoperative prognosis of
hepatocellular carcinoma. Clin Chim Acta. 495:191–197. 2019.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Pavlović N, Kopsida M, Gerwins P and
Heindryckx F: Activated platelets contribute to the progression of
hepatocellular carcinoma by altering the tumor environment. Life
Sci. 277:1196122021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sitia G, Iannacone M and Guidotti LG:
Anti-platelet therapy in the prevention of hepatitis B
virus-associated hepatocellular carcinoma. J Hepatol. 59:1135–1138.
2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Long J, Wang A, Bai Y, Lin J, Yang X, Wang
D, Yang X, Jiang Y and Zhao H: Development and validation of a
TP53-associated immune prognostic model for hepatocellular
carcinoma. EBioMedicine. 42:363–374. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tang B, Zhu J, Zhao Z, Lu C, Liu S, Fang
S, Zheng L, Zhang N, Chen M, Xu M, et al: Diagnosis and prognosis
models for hepatocellular carcinoma patient's management based on
tumor mutation burden. J Adv Res. 33:153–165. 2021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Calderaro J, Seraphin TP, Luedde T and
Simon TG: Artificial intelligence for the prevention and clinical
management of hepatocellular carcinoma. J Hepatol. 76:1348–1361.
2022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Edge SB, Byrd DR, Compton CC, Fritz AG,
Greene FL and Trott A: AJCC Cancer Staging Manual. Edge SB: 7th
edition. Springer; New York, NY: pp. 191–201. 2010
|
21
|
Gnatenko DV, Dunn JJ, McCorkle SR,
Weissmann D, Perrotta PL and Bahou WF: Transcript profiling of
human platelets using microarray and serial analysis of gene
expression. Blood. 101:2285–2293. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Raghavachari N, Xu X, Harris A, Villagra
J, Logun C, Barb J, Solomon MA, Suffredini AF, Danner RL, Kato G,
et al: Amplified expression profiling of platelet transcriptome
reveals changes in arginine metabolic pathways in patients with
sickle cell disease. Circulation. 115:1551–1562. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Yoshihara K, Shahmoradgoli M, Martínez E,
Vegesna R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW,
Levine DA, et al: Inferring tumour purity and stromal and immune
cell admixture from expression data. Nat Commun. 4:26122013.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Newman AM, Liu CL, Green MR, Gentles AJ,
Feng W, Xu Y, Hoang CD, Diehn M and Alizadeh AA: Robust enumeration
of cell subsets from tissue expression profiles. Nat Methods.
12:453–457. 2015. View Article : Google Scholar : PubMed/NCBI
|
25
|
Aran D, Hu Z and Butte AJ: xCell:
digitally portraying the tissue cellular heterogeneity landscape.
Genome Biol. 18:2202017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Xie H, Shi M, Liu Y, Cheng C, Song L, Ding
Z, Jin H, Cui X, Wang Y, Yao D, et al: Identification of m6A- and
ferroptosis-related lncRNA signature for predicting immune efficacy
in hepatocellular carcinoma. Front Immunol. 13:9149772022.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Love MI, Huber W and Anders S: Moderated
estimation of fold change and dispersion for RNA-seq data with
DESeq2. Genome Biol. 15:5502014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Robinson MD, McCarthy DJ and Smyth GK:
edgeR: A Bioconductor package for differential expression analysis
of digital gene expression data. Bioinformatics. 26:139–140. 2010.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Liang JY, Wang DS, Lin HC, Chen XX, Yang
H, Zheng Y and Li YH: A novel ferroptosis-related gene signature
for overall survival prediction in patients with hepatocellular
carcinoma. Int J Biol Sci. 16:2430–2441. 2020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X,
Li Z, Traugh N, Bu X, Li B, et al: Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response. Nat Med.
24:1550–1558. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Fang Z, Sun X, Wang X, Ma J, Palaia T,
Rana U, Miao B, Ragolia L, Hu D and Miao QR: NOGOB receptor
deficiency increases cerebrovascular permeability and hemorrhage
via impairing histone acetylation-mediated CCM1/2 expression. J
Clin Invest. 132:e1513822022. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mantovani A, Allavena P, Sica A and
Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Cocco C, Morandi F and Airoldi I: Immune
checkpoints in pediatric solid tumors: Targetable pathways for
advanced therapeutic purposes. Cells. 10:9272021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rebouissou S and Nault JC: Advances in
molecular classification and precision oncology in hepatocellular
carcinoma. J Hepatol. 72:215–229. 2020. View Article : Google Scholar : PubMed/NCBI
|
35
|
Liu Y, Beyer A and Aebersold R: On the
dependency of cellular protein levels on mrna abundance. Cell.
165:535–550. 2016. View Article : Google Scholar : PubMed/NCBI
|
36
|
Llovet JM, Montal R, Sia D and Finn RS:
Molecular therapies and precision medicine for hepatocellular
carcinoma. Nat Rev Clin Oncol. 15:599–616. 2018. View Article : Google Scholar : PubMed/NCBI
|
37
|
Sonbol MB, Riaz IB, Naqvi SAA, Almquist
DR, Mina S, Almasri J, Shah S, Almader-Douglas D, Uson Junior PLS,
Mahipal A, et al: Systemic therapy and sequencing options in
advanced hepatocellular carcinoma: A systematic review and network
meta-analysis. JAMA Oncol. 6:e2049302020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Liu Y and Gu W: The complexity of
p53-mediated metabolic regulation in tumor suppression. Semin
Cancer Biol. 85:4–32. 2022. View Article : Google Scholar : PubMed/NCBI
|
39
|
Ringelhan M, Pfister D, O'Connor T,
Pikarsky E and Heikenwalder M: The immunology of hepatocellular
carcinoma. Nat Immunol. 19:222–232. 2018. View Article : Google Scholar : PubMed/NCBI
|
40
|
Keenan BP, Fong L and Kelley RK:
Immunotherapy in hepatocellular carcinoma: The complex interface
between inflammation, fibrosis, and the immune response. J
Immunother Cancer. 7:2672019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Syn NL, Teng MWL, Mok TSK and Soo RA:
De-novo and acquired resistance to immune checkpoint targeting.
Lancet Oncol. 18:e731–e741. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Tang W, Chen Z, Zhang W, Cheng Y, Zhang B,
Wu F, Wang Q, Wang S, Rong D, Reiter FP, et al: The mechanisms of
sorafenib resistance in hepatocellular carcinoma: theoretical basis
and therapeutic aspects. Signal Transduct Target Ther. 5:872020.
View Article : Google Scholar : PubMed/NCBI
|