1
|
Siegel RL, Miller KD, Wagle NS and Jemal
A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhu H, Luo H, Zhang W, Shen Z, Hu X and
Zhu X: Molecular mechanisms of cisplatin resistance in cervical
cancer. Drug Des Devel Ther. 10:1885–1895. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Lorusso D, Petrelli F, Coinu A,
Raspagliesi F and Barni S: A systematic review comparing cisplatin
and carboplatin plus paclitaxel-based chemotherapy for recurrent or
metastatic cervical cancer. Gynecol Oncol. 133:117–123. 2014.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Kishimoto S, Kawazoe Y, Ikeno M, Saitoh M,
Nakano Y, Nishi Y, Fukushima S and Takeuchi Y: Role of Na+,
K+-ATPase alpha1 subunit in the intracellular accumulation of
cisplatin. Cancer Chemother Pharmacol. 57:84–90. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bai ZL, Wang YY, Zhe H, He JL and Hai P:
ERCC1 mRNA levels can predict the response to cisplatin-based
concurrent chemoradiotherapy of locally advanced cervical squamous
cell carcinoma. Radiat Oncol. 7:2212012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yang X, Fraser M, Abedini MR, Bai T and
Tsang BK: Regulation of apoptosis-inducing factor-mediated,
cisplatin-induced apoptosis by Akt. Br J Cancer. 98:803–808. 2008.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Ashrafizadeh M, Zarrabi A, Hushmandi K,
Kalantari M, Mohammadinejad R, Javaheri T and Sethi G: Association
of the epithelial-mesenchymal transition (EMT) with cisplatin
resistance. Int J Mol Sci. 21:40022020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Avril T, Vauleon E and Chevet E:
Endoplasmic reticulum stress signaling and chemotherapy resistance
in solid cancers. Oncogenesis. 6:e3732017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Visioli F, Wang Y, Alam GN, Ning Y, Rados
PV, Nör JE and Polverini PJ: Glucose-regulated protein 78 (Grp78)
confers chemoresistance to tumor endothelial cells under acidic
stress. PLoS One. 9:e1010532014. View Article : Google Scholar : PubMed/NCBI
|
11
|
Hu R, Warri A, Jin L, Zwart A, Riggins RB,
Fang HB and Clarke R: NF-kappaB signaling is required for XBP1
(unspliced and spliced)-mediated effects on antiestrogen
responsiveness and cell fate decisions in breast cancer. Mol Cell
Biol. 35:379–390. 2015. View Article : Google Scholar : PubMed/NCBI
|
12
|
Le Mercier M, Lefranc F, Mijatovic T,
Debeir O, Haibe-Kains B, Bontempi G, Decaestecker C, Kiss R and
Mathieu V: Evidence of galectin-1 involvement in glioma
chemoresistance. Toxicol Appl Pharmacol. 229:172–183. 2008.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Rao S, Oyang L, Liang J, Yi P, Han Y, Luo
X, Xia L, Lin J, Tan S, Hu J, et al: Biological function of HYOU1
in tumors and other diseases. Onco Targets Ther. 14:1727–1735.
2021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Jiang X, Liu B, Nie Z, Duan L, Xiong Q,
Jin Z, Yang C and Chen Y: The role of m6A modification in the
biological functions and diseases. Signal Transduct Target Ther.
6:742021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Fu Y, Dominissini D, Rechavi G and He C:
Gene expression regulation mediated through reversible m(6)A RNA
methylation. Nat Rev Genet. 15:293–306. 2014. View Article : Google Scholar : PubMed/NCBI
|
16
|
Knuckles P, Lence T, Haussmann IU, Jacob
D, Kreim N, Carl SH, Masiello I, Hares T, Villaseñor R, Hess D, et
al: Zc3h13/Flacc is required for adenosine methylation by bridging
the mRNA-binding factor Rbm15/Spenito to the m(6)A machinery
component Wtap/Fl(2)d. Genes Dev. 32:415–429. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pendleton KE, Chen B, Liu K, Hunter OV,
Xie Y, Tu BP and Conrad NK: The U6 snRNA m(6)A Methyltransferase
METTL16 regulates SAM synthetase intron retention. Cell.
169:824–835. e142017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mendel M, Chen KM, Homolka D, Gos P,
Pandey RR, McCarthy AA and Pillai RS: Methylation of structured rna
by the m(6)A writer METTL16 Is essential for mouse embryonic
development. Mol Cell. 71:986–1000. e112018. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC,
Shi H, Cui X, Su R, Klungland A, et al: Differential m(6)A,
m(6)A(m), and m(1)A demethylation mediated by FTO in the cell
nucleus and cytoplasm. Mol Cell. 71:973–985. e52018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Mauer J, Luo X, Blanjoie A, Jiao X,
Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q,
et al: Reversible methylation of m(6)A(m) in the 5′ cap controls
mRNA stability. Nature. 541:371–375. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Su Y, Wang B, Huang J, Huang M and Lin T:
YTHDC1 positively regulates PTEN expression and plays a critical
role in cisplatin resistance of bladder cancer. Cell Prolif.
56:e134042023. View Article : Google Scholar : PubMed/NCBI
|
22
|
Wu S, Yun J, Tang W, Familiari G,
Relucenti M, Wu J, Li X, Chen H and Chen R: Therapeutic m(6)A
eraser ALKBH5 mRNA-Loaded exosome-liposome hybrid nanoparticles
inhibit progression of colorectal cancer in preclinical tumor
models. ACS Nano. 17:11838–11854. 2023. View Article : Google Scholar : PubMed/NCBI
|
23
|
Niu Y, Wan A, Lin Z, Lu X and Wan G: N
(6)-Methyladenosine modification: A novel pharmacological target
for anti-cancer drug development. Acta Pharm Sin B. 8:833–843.
2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Qi L, Li Y, Qin Y, Shi G, Li T, Wang J,
Chen L, Gu Y, Zhao W and Guo Z: An individualised signature for
predicting response with concordant survival benefit for lung
adenocarcinoma patients receiving platinum-based chemotherapy. Br J
Cancer. 115:1513–1519. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Behan FM, Iorio F, Picco G, Gonçalves E,
Beaver CM, Migliardi G, Santos R, Rao Y, Sassi F, Pinnelli M, et
al: Prioritization of cancer therapeutic targets using CRISPR-Cas9
screens. Nature. 568:511–516. 2019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Meyers RM, Bryan JG, McFarland JM, Weir
BA, Sizemore AE, Xu H, Dharia NV, Montgomery PG, Cowley GS, Pantel
S, et al: Computational correction of copy number effect improves
specificity of CRISPR-Cas9 essentiality screens in cancer cells.
Nat Genet. 49:1779–1784. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yang W, Soares J, Greninger P, Edelman EJ,
Lightfoot H, Forbes S, Bindal N, Beare D, Smith JA, Thompson IR, et
al: Genomics of drug sensitivity in cancer (GDSC): A resource for
therapeutic biomarker discovery in cancer cells. Nucleic Acids Res.
41((Database issue)): D955–D961. 2013.PubMed/NCBI
|
28
|
Li Y, Xiao J, Bai J, Tian Y, Qu Y, Chen X,
Wang Q, Li X, Zhang Y and Xu J: Molecular characterization and
clinical relevance of m(6)A regulators across 33 cancer types. Mol
Cancer. 18:1372019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Liu J, Harada BT and He C: Regulation of
gene expression by N(6)-methyladenosine in cancer. Trends Cell
Biol. 29:487–499. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Huang H, Weng H and Chen J: m(6)A
modification in coding and non-coding RNAs: Roles and therapeutic
implications in cancer. Cancer Cell. 37:270–288. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Nombela P, Miguel-Lopez B and Blanco S:
The role of m(6)A, m(5)C and Ψ RNA modifications in cancer: Novel
therapeutic opportunities. Mol Cancer. 20:182021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Qiu F, Liu Q, Xia Y, Jin H, Lin Y and Zhao
X: Circ_0000658 knockdown inhibits epithelial-mesenchymal
transition in bladder cancer via miR-498-induced HMGA2
downregulation. J Exp Clin Cancer Res. 41:222022. View Article : Google Scholar : PubMed/NCBI
|
33
|
Liao Y, Wang J, Jaehnig EJ, Shi Z and
Zhang B: WebGestalt 2019: Gene set analysis toolkit with revamped
UIs and APIs. Nucleic Acids Res. 47:W199–W205. 2019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhou Y, Zeng P, Li YH, Zhang Z and Cui Q:
SRAMP: Prediction of mammalian N6-methyladenosine (m6A) sites based
on sequence-derived features. Nucleic Acids Res. 44:e912016.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Xuan JJ, Sun WJ, Lin PH, Zhou KR, Liu S,
Zheng LL, Qu LH and Yang JH: RMBase v2.0: Deciphering the map of
RNA modifications from epitranscriptome sequencing data. Nucleic
Acids Res. 46((D1)): D327–D334. 2018. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yi Y, Zhao Y, Huang Y and Wang D: A brief
review of RNA-protein interaction database resources. Noncoding
RNA. 3:62017.PubMed/NCBI
|
37
|
Hochberg Y and Benjamini Y: More powerful
procedures for multiple significance testing. Stat Med. 9:811–818.
1990. View Article : Google Scholar : PubMed/NCBI
|
38
|
Tsukamoto Y, Kuwabara K, Hirota S, Ikeda
J, Stern D, Yanagi H, Matsumoto M, Ogawa S and Kitamura Y: 150-kD
oxygen-regulated protein is expressed in human atherosclerotic
plaques and allows mononuclear phagocytes to withstand cellular
stress on exposure to hypoxia and modified low density lipoprotein.
J Clin Invest. 98:1930–1941. 1996. View Article : Google Scholar : PubMed/NCBI
|
39
|
Giffin L, Yan F, Major MB and Damania B:
Modulation of Kaposi's sarcoma-associated herpesvirus interleukin-6
function by hypoxia-upregulated protein 1. J Virol. 88:9429–9441.
2014. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kuwabara K, Matsumoto M, Ikeda J, Hori O,
Ogawa S, Maeda Y, Kitagawa K, Imuta N, Kinoshita T and Stern DM:
Purification and characterization of a novel stress protein, the
150-kDa oxygen-regulated protein (ORP150), from cultured rat
astrocytes and its expression in ischemic mouse brain. J Biol Chem.
271:5025–5032. 1996. View Article : Google Scholar : PubMed/NCBI
|
41
|
Li X, Zhang NX, Ye HY, Song PP, Chang W,
Chen L, Wang Z, Zhang L and Wang NN: HYOU1 promotes cell growth and
metastasis via activating PI3K/AKT signaling in epithelial ovarian
cancer and predicts poor prognosis. Eur Rev Med Pharmacol Sci.
23:4126–4135. 2019.PubMed/NCBI
|
42
|
Stojadinovic A, Hooke JA, Shriver CD,
Nissan A, Kovatich AJ, Kao TC, Ponniah S, Peoples GE and Moroni M:
HYOU1/Orp150 expression in breast cancer. Med Sci Monit.
13:BR231–BR239. 2007.PubMed/NCBI
|
43
|
Liu J and Wang Y: Long non-coding RNA
KCNQ1OT1 facilitates the progression of cervical cancer and tumor
growth through modulating miR-296-5p/HYOU1 axis. Bioengineered.
12:8753–8767. 2021. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhou Y, Liao Q, Li X, Wang H, Wei F, Chen
J, Yang J, Zeng Z, Guo X, Chen P, et al: HYOU1, regulated by
LPLUNC1, is up-regulated in nasopharyngeal carcinoma and associated
with poor prognosis. J Cancer. 7:367–376. 2016. View Article : Google Scholar : PubMed/NCBI
|
45
|
Desrosiers R, Friderici K and Rottman F:
Identification of methylated nucleosides in messenger RNA from
Novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975.
1974. View Article : Google Scholar : PubMed/NCBI
|
46
|
Saletore Y, Meyer K, Korlach J, Vilfan ID,
Jaffrey S and Mason CE: The birth of the Epitranscriptome:
Deciphering the function of RNA modifications. Genome Biol.
13:1752012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Meyer KD, Patil DP, Zhou J, Zinoviev A,
Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR
m(6)A promotes cap-independent translation. Cell. 163:999–1010.
2015. View Article : Google Scholar : PubMed/NCBI
|
48
|
Dong Z, Liu LH, Han B, Pincheira R and
Zhang JT: Role of eIF3 p170 in controlling synthesis of
ribonucleotide reductase M2 and cell growth. Oncogene.
23:3790–3801. 2004. View Article : Google Scholar : PubMed/NCBI
|
49
|
Su R, Dong L, Li Y, Gao M, He PC, Liu W,
Wei J, Zhao Z, Gao L, Han L, et al: METTL16 exerts an
m(6)A-independent function to facilitate translation and
tumorigenesis. Nat Cell Biol. 24:205–216. 2022. View Article : Google Scholar : PubMed/NCBI
|
50
|
Xu X, Han L, Yang H, Duan L, Zhou B, Zhao
Y, Qu J, Ma R, Zhou H and Liu Z: The A/G allele of eIF3a rs3740556
predicts platinum-based chemotherapy resistance in lung cancer
patients. Lung Cancer. 79:65–72. 2013. View Article : Google Scholar : PubMed/NCBI
|