Role of the human cytochrome b561 family in iron metabolism and tumors (Review)
- Authors:
- Xiaofeng Zhou
- Zheng An
- Hao Lei
- Hongyuan Liao
- Xinjian Guo
-
Affiliations: Pathology Department, Qinghai University Affiliated Hospital, Xining, Qinghai 810001, P.R. China, Pathology Department, Qinghai Women and Children's Hospital, Xining, Qinghai 810007, P.R. China, Graduate School, Qinghai University, Xining, Qinghai 810001, P.R. China - Published online on: December 23, 2024 https://doi.org/10.3892/ol.2024.14857
- Article Number: 111
-
Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Kelley PM and Njus D: Cytochrome b561 spectral changes associated with electron transfer in chromaffin-vesicle ghosts. J Biol Chem. 261:6429–6432. 1986. View Article : Google Scholar : PubMed/NCBI | |
Srivastava M: Xenopus cytochrome b561: Molecular confirmation of a general five transmembrane structure and developmental regulation at the gastrula stage. DNA Cell Biol. 15:1075–1080. 1986. View Article : Google Scholar : PubMed/NCBI | |
Asard H, Horemans N and Caubergs RJ: Transmembrane electron transport in ascorbate-loaded plasma membrane vesicles from higher plants involves a b-type cytochrome. FEBS Lett. 306:143–146. 1992. View Article : Google Scholar : PubMed/NCBI | |
Flatmark T, Terland O and Helle KB: Electron carriers of the bovine adrenal chromaffin granules. Biochim. Biophys. Acta. 226:9–19. 1971. | |
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al: The sequence of the human genome. Science. 291:1304–1351. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mouse Genome Sequencing Consortium, . Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, et al: Initial sequencing and comparative analysis of the mouse genome. Nature. 420:520–562. 2002. View Article : Google Scholar : PubMed/NCBI | |
Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, Scherer SE, Li PW, Hoskins RA, Galle RF, et al: The genome sequence of Drosophila melanogaster. Science. 287:2185–2195. 2000. View Article : Google Scholar : PubMed/NCBI | |
Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, Wincker P, Clark AG, Ribeiro JM, Wides R, et al: The genome sequence of the malaria mosquito Anopheles gambiae. Science. 298:129–149. 2002. View Article : Google Scholar : PubMed/NCBI | |
C. elegans Sequencing Consortium, . Genome sequence of the nematode C. elegans: A platform for investigating biology. Science. 282:2012–2018. 1998. View Article : Google Scholar : PubMed/NCBI | |
Asada A, Kusakawa T, Orii H, Agata K, Watanabe K and Tsubaki M: Planarian cytochrome b561: Conservation of a six transmembrane structure and localization along the central and peripheral nervous system. J Biochem. 131:175–182. 2002. View Article : Google Scholar : PubMed/NCBI | |
Arabidopsis Genome Initiative, . Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 408:796–815. 2004. | |
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, et al: A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science. 296:92–100. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lu P, Ma D, Yan C, Gong X, Du M and Shi Y: Structure and mechanism of a eukaryotic transmembrane ascorbate-dependent oxidoreductase. Proc Natl Acad Sci USA. 111:1813–1818. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tsubaki M, Takeuchi F and Nakanishi N: Cytochrome b561 protein family: Expanding roles and versatile transmembrane electron transfer abilities as predicted by a new classification system and protein sequence motif analyses. Biochim Biophys Acta. 1753:174–190. 2005. View Article : Google Scholar : PubMed/NCBI | |
Silsand T and Flatmark T: Purification of cytochrome b-561: An integral heme protein of the adrenal chromaffin granule membrane. Biochim Biophys Acta. 359:257–266. 1974. View Article : Google Scholar : PubMed/NCBI | |
Bérczi A and Zimányi L: The trans-membrane cytochrome b561 proteins: Structural information and biological function. Curr Protein Pept Sci. 15:745–760. 2014. View Article : Google Scholar : PubMed/NCBI | |
McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, et al: An iron-regulated ferric reductase associated with the absorption of dietary iron. Science. 291:1755–1759. 2001. View Article : Google Scholar : PubMed/NCBI | |
Abbate V and Hider R: Iron in biology. Metallomics. 9:1467–1469. 2017. View Article : Google Scholar : PubMed/NCBI | |
Galy B, Conrad M and Muckenthaler M: Mechanisms controlling cellular and systemic iron homeostasis. Nat Rev Mol Cell Biol. 25:133–155. 2024. View Article : Google Scholar : PubMed/NCBI | |
Kawabata H: Transferrin and transferrin receptors update. Free Radic Biol Med. 133:46–54. 2019. View Article : Google Scholar : PubMed/NCBI | |
Srai SK and Sharp P: Proteins of Iron Homeostasis. Iron Physiology and Pathophysiology in Humans. Anderson GJ and McLaren GD: Humana Press; Totowa NJ, USA: pp. pp3–25. 2012, ISBN 978-1-60327-484-5. View Article : Google Scholar | |
Hubert N and Hentze MW: Previously uncharacterized isoforms of divalent metal transporter (DMT)-1: Implications for regulation and cellular function. Proc Natl Acad Sci USA. 99:12345–12350. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lemler DJ, Lynch ML, Tesfay L, Deng Z, Paul BT, Wang X, Hegde P, Manz DH, Torti SV and Torti FM: DCYTB is a predictor of outcome in breast cancer that functions via iron-independent mechanisms. Breast Cancer Res. 19:252017. View Article : Google Scholar : PubMed/NCBI | |
Menniti FS, Knoth J and Diliberto EJ Jr: Role of ascorbic acid in dopamine beta-hydroxylation. The endogenous enzyme cofactor and putative electron donor for cofactor regeneration. J Biol Chem. 261:16901–16908. 1986. View Article : Google Scholar : PubMed/NCBI | |
Kent UM and Fleming PJ: Purified cytochrome b561 catalyzes transmembrane electron transfer for dopamine beta-hydroxylase and peptidyl glycine alpha-amidating monooxygenase activities in reconstituted systems. J Biol Chem. 262:8174–8178. 1987. View Article : Google Scholar : PubMed/NCBI | |
Lane DJ and Richardson DR: The active role of vitamin C in mammalian iron metabolism:. Much more than just enhanced iron absorption! = Free Radic Biol Med. 75:69–83. 2014.PubMed/NCBI | |
Atanassova BD and Tzatchev KN: Ascorbic acid-important for iron metabolism. Folia Med (Plovdiv). 50:11–16. 2008.PubMed/NCBI | |
Lane DJR and Lawen A: Non-transferrin iron reduction and uptake are regulated by transmembrane ascorbate cycling in K562 cells. J Biol Chem. 283:12701–12708. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lane DJ, Robinson SR, Czerwinska H, Bishop GM and Lawen A: Two routes of iron accumulation in astrocytes: Ascorbate-dependent ferrous iron uptake via the divalent metal transporter (DMT1) plus an independent route for ferric iron. Biochem J. 432:123–132. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lane DJ, Chikhani S, Richardson V and Richardson DR: Transferrin iron uptake is stimulated by ascorbate via an intracellular reductive mechanism. Biochim Biophys Acta. 1833:1527–1541. 2013. View Article : Google Scholar : PubMed/NCBI | |
Toth I, Rogers JT, McPhee JA, Elliott SM, Abramson SL and Bridges KR: Ascorbic acid enhances iron-induced ferritin translation in human leukemia and hepatoma cells. J Biol Chem. 270:2846–2852. 1995. View Article : Google Scholar : PubMed/NCBI | |
Toth I and Bridges KR: Ascorbic acid enhances ferritin mRNA translation by an IRP/aconitase switch. J Biol Chem. 270:19540–19544. 1995. View Article : Google Scholar : PubMed/NCBI | |
Bridges KR: Ascorbic acid inhibits lysosomal autophagy of ferritin. J Biol Chem. 262:14773–1478. 1987. View Article : Google Scholar : PubMed/NCBI | |
Hoffman KE, Yanelli K and Bridges KR: Ascorbic acid and iron metabolism: Alterations in lysosomal function. Am J Clin Nutr. 54 (6 Suppl):S1188S–S1192S. 1991. View Article : Google Scholar : PubMed/NCBI | |
Richardson DR: Role of ceruloplasmin and ascorbate in cellular iron release. J Lab Clin Med. 134:454–465. 1999. View Article : Google Scholar : PubMed/NCBI | |
Crichton R: In Iron Metabolism: From Molecular Mechanisms to Cinical Consequences. pp. 17–58. John Wiley and Sons; 2009 | |
Sun H, Zhang C, Cao S, Sheng T, Dong N and Xu Y: Fenton reactions drive nucleotide and ATP syntheses in cancer. J Mol Cell Biol. 10:448–459. 2018. View Article : Google Scholar : PubMed/NCBI | |
Akatsuka S, Yamashita Y, Ohara H, Liu YT, Izumiya M, Abe K, Ochiai M, Jiang L, Nagai H, Okazaki Y, et al: Fenton reaction induced cancer in wild type rats recapitulates genomic alterations observed in human cancer. PLoS One. 7:e434032012. View Article : Google Scholar : PubMed/NCBI | |
Torti SV and Torti FM: Iron and cancer: 2020 vision. Cancer Res. 80:5435–5448. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bian Z, Hann HW, Ye Z, Yin C, Wang Y, Fang W, Wan S, Wang C and Tao K: Ferritin level prospectively predicts hepatocarcinogenesis in patients with chronic hepatitis B virus infection. Oncol Lett. 16:3499–3508. 2018.PubMed/NCBI | |
Song A, Eo W, Kim S, Shim B and Lee S: Significance of serum ferritin as a prognostic factor in advanced hepatobiliary cancer patients treated with Korean medicine: A retrospective cohort study. BMC Complement Altern Med. 18:1762018. View Article : Google Scholar : PubMed/NCBI | |
Xue X, Ramakrishnan SK, Weisz K, Triner D, Xie L, Attili D, Pant A, Győrffy B, Zhan M, Carter-Su C, et al: Iron uptake via DMT1 integrates cell cycle with JAK-STAT3 signaling to promote colorectal tumorigenesis. Cell Metab. 24:447–461. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gray CP, Arosio P and Hersey P: Association of increased levels of heavy-chain ferritin with increased CD4+ CD25+ regulatory T-cell levels in patients with melanoma. Clin Cancer Res. 9:2551–2559. 2003.PubMed/NCBI | |
Liu NQ, De Marchi T, Timmermans AM, Beekhof R, Trapman-Jansen AM, Foekens R, Look MP, van Deurzen CH, Span PN, Sweep FC, et al: Ferritin heavy chain in triple negative breast cancer: A favorable prognostic marker that relates to a cluster of differentiation 8 positive (CD8+) effector T-cell response. Mol Cell Proteomics. 13:1814–1827. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lelièvre P, Sancey L, Coll JL, Deniaud A and Busser B: Iron dysregulation in human cancer: Altered metabolism, biomarkers for diagnosis, prognosis, monitoring and rationale for therapy. Cancers (Basel). 12:35242020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yu L, Ding J and Chen Y: Iron metabolism in cancer. Int J Mol Sci. 20:952018. View Article : Google Scholar : PubMed/NCBI | |
Habashy HO, Powe DG, Staka CM, Rakha EA, Ball G, Green AR, Aleskandarany M, Paish EC, Douglas Macmillan R, Nicholson RI, et al: Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen. Breast Cancer Res Treat. 119:283–293. 2010. View Article : Google Scholar : PubMed/NCBI | |
Alkhateeb AA, Han B and Connor JR: Ferritin stimulates breast cancer cells through an iron-independent mechanism and is localized within tumor-associated macrophages. Breast Cancer Res Treat. 137:733–744. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pinnix ZK, Miller LD, Wang W, D'Agostino R Jr, Kute T, Willingham MC, Farris M, Petty WJ, de Hoyos A, Weaver KE and Wentworth S: Ferroportin and iron regulation in breast cancer progression and prognosis. Sci Transl Med. 2:43ra562010. View Article : Google Scholar : PubMed/NCBI | |
Morales M and Xue X: Targeting iron metabolism in cancer therapy. Theranostics. 11:8412–8429. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bashtovyy D, Bérczi A, Asard H and Páli T: Structure prediction for the di-heme cytochrome b561 protein family. Protoplasma. 221:31–40. 2003. View Article : Google Scholar : PubMed/NCBI | |
Perin MS, Fried VA, Slaughter CA and Südhof TC: The structure of cytochrome b561, a secretory vesicle-specific electron transport protein. EMBO J. 7:2697–2703. 1988. View Article : Google Scholar : PubMed/NCBI | |
Asard H, Kapila J, Verelst W and Bérczi A: Higher-plant plasma membrane cytochrome b561: A protein in search of a function. Protoplasma. 217:77–93. 2001. View Article : Google Scholar : PubMed/NCBI | |
Degli Esposti M, Kamensky YuA, Arutjunjan AM and Konstantinov AA: A model for the molecular organization of cytochrome beta-561 in chromaffin granule membranes. FEBS Lett. 254:74–78. 1989. View Article : Google Scholar : PubMed/NCBI | |
Tsubaki M, Nakayama M, Okuyama E, Ichikawa Y and Hori H: Existence of two heme B centers in cytochrome b561 from bovine adrenal chromaffin vesicles as revealed by a new purification procedure and EPR spectroscopy. J Biol Chem. 272:23206–23210. 1997. View Article : Google Scholar : PubMed/NCBI | |
Oakhill JS, Marritt SJ, Gareta EG, Cammack R and McKie AT: Functional characterization of human duodenal cytochrome b (Cybrd1): Redox properties in relation to iron and ascorbate metabolism. Biochim Biophys Acta. 1777:260–268. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bérczi A, Su D, Lakshminarasimhan M, Vargas A and Asard H: Heterologous expression and site-directed mutagenesis of an ascorbate-reducible cytochrome b561. Arch Biochem Biophys. 443:82–92. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kamensky Y, Liu W, Tsai AL, Kulmacz RJ and Palmer G: Axial ligation and stoichiometry of heme centers in adrenal cytochrome b561. Biochemistry. 46:8647–8658. 2007. View Article : Google Scholar : PubMed/NCBI | |
Okuyama E, Yamamoto R, Ichikawa Y and Tsubaki M: Structural basis for the electron transfer across the chromaffin vesicle membranes catalyzed by cytochrome b561: Analyses of cDNA nucleotide sequences and visible absorption spectra. Biochim. Biophys. Acta. 1383:269–278. 1998.PubMed/NCBI | |
Takeuchi F, Kobayashi K, Tagawa S and Tsubaki M: Ascorbate inhibits the carbethoxylation of two histidyl and one tyrosyl residues indispensable for the transmembrane electron transfer reaction of cytochrome b561. Biochemistry. 40:4067–4076. 2001. View Article : Google Scholar : PubMed/NCBI | |
Aravind L: DOMON: An ancient extracellular domain in dopamine beta-monooxygenase and other proteins. Trends Biochem Sci. 26:524–526. 2001. View Article : Google Scholar : PubMed/NCBI | |
Picco C, Scholz-Starke J, Naso A, Preger V, Sparla F, Trost P and Carpaneto A: How are cytochrome b561 electron currents controlled by membrane voltage and substrate availability? Antioxid Redox Signal. 21:384–391. 2014. View Article : Google Scholar : PubMed/NCBI | |
Srivastava M, Gibson KR, Pollard HB and Fleming PJ: Human cytochrome b561: A revised hypothesis for conformation in membranes which reconciles sequence and functional information. Biochem J. 303:915–921. 1994. View Article : Google Scholar : PubMed/NCBI | |
Nakanishi N, Takeuchi F and Tsubaki M: Histidine cycle mechanism for the concerted proton/electron transfer from ascorbate to the cytosolic haem b centre of cytochrome b561: A unique machinery for the biological transmembrane electron transfer. J Biochem. 142:553–560. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kipp BH, Kelley PM and Njus D: Evidence for an essential histidine residue in the ascorbate-binding site of cytochrome b561. Biochemistry. 40:3931–3937. 2001. View Article : Google Scholar : PubMed/NCBI | |
Iliadi KG, Avivi A, Iliadi NN, Knight D, Korol AB, Nevo E, Taylor P, Moran MF, Kamyshev NG and Boulianne GL: Nemy encodes a cytochrome b561 that is required for Drosophila learning and memory. Proc Natl Acad Sci USA. 105:19986–19991. 2008. View Article : Google Scholar : PubMed/NCBI | |
Su D and Asard H: Three mammalian cytochromes b561 are ascorbate-dependent ferrireductases. FEBS J. 273:3722–3734. 2006. View Article : Google Scholar : PubMed/NCBI | |
VanDuijn MM, Tijssen K, VanSteveninck J, Van Den Broek PJ and Van Der Zee J: Erythrocytes reduce extracellular ascorbate free radicals using intracellular ascorbate as an electron donor. J Biol Chem. 275:27720–27725. 2000. View Article : Google Scholar : PubMed/NCBI | |
Asard H, Venken M, Caubergs R, Reijnders W, Oltmann FL and De Greef JA: b-Type cytochromes in higher plant plasma membranes. Plant Physiol. 90:1077–1083. 1989. View Article : Google Scholar : PubMed/NCBI | |
Askerlund P, Larsson C and Widell S: Cytochromes of plant plasma membranes. Characterization by absorbance difference spectroscopy and redox titration. Physiol Plant. 76:123–134. 1989. View Article : Google Scholar | |
Vargas JD, Herpers B, McKie AT, Gledhill S, McDonnell J, van den Heuvel M, Davies KE and Ponting CP: Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases. Biochim Biophys Acta. 1651:116–123. 2003. View Article : Google Scholar : PubMed/NCBI | |
Herrmann T, Muckenthaler M, van der Hoeven F, Brennan K, Gehrke SG, Hubert N, Sergi C, Gröne HJ, Kaiser I, Gosch I, et al: Iron overload in adult Hfe-deficient mice independent of changes in the steady-state expression of the duodenal iron transporters DMT1 and Ireg1/ferroportin. J Mol Med. 82:39–48. 2004. View Article : Google Scholar : PubMed/NCBI | |
Escriou V, Laporte F, Garin J, Brandolin G and Vignais PV: Purification and physical properties of a novel type of cytochrome b from rabbit peritoneal neutrophils. J Biol Chem. 269:14007–14014. 1994. View Article : Google Scholar : PubMed/NCBI | |
Pruss RM and Shepard EA: Cytochrome b561 can be detected in many neuroendocrine tissues using a specific monoclonal antibody. Neuroscience. 22:149–157. 1987. View Article : Google Scholar : PubMed/NCBI | |
Srivastava M: Genomic structure and expression of the human gene encoding cytochrome b561, an integral protein of the chromaffin granule membrane. J Biol Chem. 270:22714–22720. 1995. View Article : Google Scholar : PubMed/NCBI | |
Njus D and Kelley PM: The secretory-vesicle ascorbate-regenerating system: A chain of concerted H+/e(−)-transfer reactions. Biochim Biophys Acta. 1144:235–248. 1993. View Article : Google Scholar : PubMed/NCBI | |
Olak ME, Thirdborough SM, Ung CY, Elliott T, Healy E, Freeman TC and Ardern-Jones MR: Distinct molecular signature of human skin langerhans cells denotes critical differences in cutaneous dendritic cell immune regulation. J Invest Dermatol. 134:695–703. 2014. View Article : Google Scholar : PubMed/NCBI | |
Van den Berg MP, Almomani R, Biaggioni I, van Faassen M, van der Harst P, Silljé HHW, Mateo Leach I, Hemmelder MH, Navis G, Luijckx GJ, et al: Mutations in CYB561 causing a novel orthostatic hypotension syndrome. Circ Res. 122:846–854. 2018. View Article : Google Scholar : PubMed/NCBI | |
Willis S, Villalobos VM, Gevaert O, Abramovitz M, Williams C, Sikic BI and Leyland-Jones B: Single gene prognostic biomarkers in ovarian cancer: A meta-analysis. PLoS One. 11:e01491832016. View Article : Google Scholar : PubMed/NCBI | |
Olarte CK and Bagamasbad DP: SAT-132 the secretory vesicle membrane protein, CYB561, promotes the growth and metastatic potential of castration-resistant neuroendocrine prostate cancer. J Endocr Soc. 4 (Suppl 1):SAT–132. 2020. View Article : Google Scholar | |
Zhou X, Shen G, Ren D, Guo X, Han J, Guo Q, Zhao F, Wang M, Dong Q, Li Z and Zhao J: Expression and clinical prognostic value of CYB561 in breast cancer. J Cancer Res Clin Oncol. 148:1879–1892. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Zhao Y, Shao Q and Jiang G: Cytochrome b561 serves as a potential prognostic biomarker and target for breast cancer. Int J Gen Med. 14:10447–10464. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Guo X, Han J, Wang M, Liu Z, Ren D, Zhao J and Li Z: Cytochrome b561 regulates iron metabolism by activating the Akt/mTOR pathway to promote Breast Cancer Cells proliferation. Exp Cell Res. 431:1137602023. View Article : Google Scholar : PubMed/NCBI | |
Zhao T, Wang C, Zhao N, Qiao G, Hua J, Meng D, Liu L, Zhong B, Liu M, Wang Y, et al: CYB561 promotes HER2+ breast cancer proliferation by inhibiting H2AFY degradation. Cell Death Discov. 10:382024. View Article : Google Scholar : PubMed/NCBI | |
Ganasen M, Togashi H, Takeda H, Asakura H, Tosha T, Yamashita K, Hirata K, Nariai Y, Urano T, Yuan X, et al: Structural basis for promotion of duodenal iron absorption by enteric ferric reductase with ascorbate. Commun Biol. 1:1202018. View Article : Google Scholar : PubMed/NCBI | |
Su D, May JM, Koury MJ and Asard H: Human erythrocyte membranes contain a cytochrome b561 that may be involved in extracellular ascorbate recycling. J Biol Chem. 281:39852–39859. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wyman S, Simpson RJ, McKie AT and Sharp PA: Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett. 582:1901–1906. 2008. View Article : Google Scholar : PubMed/NCBI | |
Asard H, Barbaro R, Trost P and Bérczi A: Cytochromes b561: Ascorbate-mediated trans-membrane electron transport. Antioxid Redox Signal. 19:1026–1035. 2013. View Article : Google Scholar : PubMed/NCBI | |
Choi J, Masaratana P, Latunde-Dada GO, Arno M, Simpson RJ and McKie AT: Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions. J Nutr. 142:1929–1934. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xue X, Taylor M, Anderson E, Hao C, Qu A, Greenson JK, Zimmermann EM, Gonzalez FJ and Shah YM: Hypoxia-inducible factor-2α activation promotes colorectal cancer progression by dysregulating iron homeostasis. Cancer Res. 72:2285–2293. 2012. View Article : Google Scholar : PubMed/NCBI | |
Brookes MJ, Hughes S, Turner FE, Reynolds G, Sharma N, Ismail T, Berx G, McKie AT, Hotchin N, Anderson GJ, et al: Modulation of iron transport proteins in human colorectal carcinogenesis. Gut. 55:1449–1460. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Cao J, Jiang W, Wang S and Cheng J: Upregulated expression of CYBRD1 predicts poor prognosis of patients with ovarian cancer. J Oncol. 2021:75484062021.PubMed/NCBI | |
Qing M, Zhou J, Chen W and Cheng L: Highly expressed CYBRD1 associated with glioma recurrence regulates the immune response of glioma cells to interferon. Evid Based Complement Alternat Med. 2021:27932222021. View Article : Google Scholar : PubMed/NCBI | |
Boult J, Roberts K, Brookes MJ, Hughes S, Bury JP, Cross SS, Anderson GJ, Spychal R, Iqbal T and Tselepis C: Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma. Clin Cancer Res. 14:379–387. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rychtarcikova Z, Lettlova S, Tomkova V, Korenkova V, Langerova L, Simonova E, Zjablovskaja P, Alberich-Jorda M, Neuzil J and Truksa J: Tumor-initiating cells of breast and prostate origin show alterations in the expression of genes related to iron metabolism. Oncotarget. 8:6376–6398. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee HY, Li CC, Li WM, Hsu YL, Yeh HC, Ke HL, Yeh BW, Huang CN, Li CF, Kuo PL and Wu WJ: Identification of potential genes in upper tract urothelial carcinoma using next-generation sequencing with bioinformatics and in vitro analyses. PeerJ. 9:e113432021. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Huang W, Zhu C, Sun X, Zhang Q, Zhang L, Qi Q, Bai X, Feng Y and Wang C: miR-423-3p activates FAK signaling pathway to drive EMT process and tumor growth in lung adenocarcinoma through targeting CYBRD1. J Clin Lab Anal. 35:e240442021. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Cheng Y, Duan M, Qi N and Liu J: Unveiling differentially expressed genes upon regulation of transcription factors in sepsis. Biotech. 7:462017. | |
Al-Eitan LN, Tarkhan AH, Alghamdi MA, Al-Qarqaz FA and Al-Kofahi HS: Transcriptome analysis of HPV-induced warts and healthy skin in humans. BMC Med Genomics. 13:352020. View Article : Google Scholar : PubMed/NCBI | |
Meng F, Fleming BA, Jia X, Rousek AA, Mulvey MA and Ward DM: Lysosomal iron recycling in mouse macrophages is dependent upon both LcytB and Steap3 reductases. Blood Adv. 6:1692–1707. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Guo R, Trudeau SJ, Wolinsky E, Ast T, Liang JH, Jiang C, Ma Y, Teng M, Mootha VK and Gewurz BE: CYB561A3 is the key lysosomal iron reductase required for Burkitt B-cell growth and survival. Blood. 138:2216–2230. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lemonnier N, Melén E, Jiang Y, Joly S, Ménard C, Aguilar D, Acosta-Perez E, Bergström A, Boutaoui N, Bustamante M, et al: A novel whole blood gene expression signature for asthma, dermatitis, and rhinitis multimorbidity in children and adolescents. Allergy. 75:3248–3260. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Liu L, Liu Q, He F and Zhu H: LncRNA HOXD-AS1 affects proliferation and apoptosis of cervical cancer cells by promoting FRRS1 expression via transcription factor ELF1. Cell Cycle. 21:416–426. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ponting CP: Domain homologues of dopamine b-hydroxylase and ferric reductase: Roles for iron metabolism in neurodegenerative disorders? Hum Mol Genet. 10:1853–1858. 2001. View Article : Google Scholar : PubMed/NCBI | |
Binder J, Ursu O, Bologa C, Jiang S, Maphis N, Dadras S, Chisholm D, Weick J, Myers O, Kumar P, et al: Machine learning prediction and tau-based screening identifies potential Alzheimer's disease genes relevant to immunity. Commun Biol. 5:1252022. View Article : Google Scholar : PubMed/NCBI | |
Linton KM, Hey Y, Saunders E, Jeziorska M, Denton J, Wilson CL, Swindell R, Dibben S, Miller CJ, Pepper SD, et al: Acquisition of biologically relevant gene expression data by Affymetrix microarray analysis of archival formalin-fixed paraffin-embedded tumours. Br J Cancer. 98:1403–1414. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li S, Shi J, Gao H, Yuan Y, Chen Q, Zhao Z, Wang X, Li B, Ming L, Zhong J, et al: Identification of a gene signature associated with radiotherapy and prognosis in gliomas. Oncotarget. 8:88974–88987. 2017. View Article : Google Scholar : PubMed/NCBI | |
El Behery M, Fujimura M, Kimura T and Tsubaki M: Direct measurements of ferric reductase activity of human 101F6 and its enhancement upon reconstitution into phospholipid bilayer nanodisc. Biochem Biophys Rep. 21:1007302020.PubMed/NCBI | |
Mizutani A, Sanuki R, Kakimoto K, Kojo S and Taketani S: Involvement of 101F6, a homologue of cytochrome b561, in the reduction of ferric ions. J Biochem. 142:699–705. 2007. View Article : Google Scholar : PubMed/NCBI | |
Recuenco MC, Fujito M, Rahman MM, Sakamoto Y, Takeuchi F and Tsubaki M: Functional expression and characterization of human 101F6 protein, a homologue of cytochrome b561 and a candidate tumor suppressor gene product. Biofactors. 34:219–230. 2008. View Article : Google Scholar : PubMed/NCBI | |
Recuenco MC, Rahman MM, Takeuchi F, Kobayashi K and Tsubaki M: Electron transfer reactions of candidate tumor suppressor 101F6 protein, a cytochrome b561 homologue, with ascorbate and monodehydroascorbate radical. Biochemistry. 52:3660–3668. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ji L, Nishizaki M, Gao B, Burbee D, Kondo M, Kamibayashi C, Xu K, Yen N, Atkinson EN, Fang B, et al: Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res. 62:2715–2720. 2002.PubMed/NCBI | |
Ji L, Minna JD and Roth JA: 3p21.3 tumor suppressor cluster: Prospects for translational applications. Future Oncol. 1:79–92. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lerman MI and Minna JD: The international lung cancer chromosome 3p21.3 tumor suppressor gene consortium. The 630-kb lung cancer homozygous deletion region on human chromosome 3p21.3: Identification and evaluation of the resident candidate tumor suppressor genes. Cancer Res. 60:6116–6133. 2000.PubMed/NCBI | |
Zabarovsky ER, Lerman MI and Minna JD: Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene. 21:6915–6935. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ohtani S, Iwamaru A, Deng W, Ueda K, Wu G, Jayachandran G, Kondo S, Atkinson EN, Minna JD, Roth JA and Ji L: Tumor suppressor 101F6 and ascorbate synergistically and selectively inhibit non-small cell lung cancer growth by caspase-independent apoptosis and autophagy. Cancer Res. 67:6293–6303. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tao B, Shi J, Shuai S, Zhou H, Zhang H, Li B, Wang X, Li G, He H and Zhong J: CYB561D2 up-regulation activates STAT3 to induce immunosuppression and aggression in gliomas. J Transl Med. 19:3382021. View Article : Google Scholar : PubMed/NCBI |