1
|
Eng C, Jácome AA, Agarwal R, Hayat MH,
Byndloss MX, Holowatyj AN, Bailey C and Lieu CH: A comprehensive
framework for early-onset colorectal cancer research. Lancet Oncol.
23:e116–e128. 2022. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhou J, Ji Q and Li Q: Resistance to
anti-EGFR therapies in metastatic colorectal cancer: Underlying
mechanisms and reversal strategies. J Exp Clin Cancer Res.
40:3282021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhong Y, Chen X, Wu S, Fang H, Hong L,
Shao L, Wang L and Wu J: Deciphering colorectal cancer
radioresistance and immune microrenvironment: Unraveling the role
of EIF5A through single-cell RNA sequencing and machine learning.
Front Immunol. 15:14662262024. View Article : Google Scholar : PubMed/NCBI
|
4
|
Li QH, Wang YZ, Tu J, Liu CW, Yuan YJ, Lin
R, He WL, Cai SR, He YL and Ye JN: Anti-EGFR therapy in metastatic
colorectal cancer: Mechanisms and potential regimens of drug
resistance. Gastroenterol Rep (Oxf). 8:179–191. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhang Q, Zheng Y, Liu J, Tang X, Wang Y,
Li X, Li H, Zhou X, Tang S, Tang Y, et al: CircIFNGR2 enhances
proliferation and migration of CRC and induces cetuximab resistance
by indirectly targeting KRAS via sponging to MiR-30b. Cell Death
Dis. 14:242023. View Article : Google Scholar : PubMed/NCBI
|
6
|
Siegel RL, Wagle NS, Cercek A, Smith RA
and Jemal A: Colorectal cancer statistics, 2023. CA Cancer J Clin.
73:233–254. 2023. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xia C, Dong X, Li H, Cao M, Sun D, He S,
Yang F, Yan X, Zhang S, Li N and Chen W: Cancer statistics in China
and United States, 2022: Profiles, trends, and determinants. Chin
Med J (Engl). 135:584–590. 2022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kashiwagi S, Asano Y, Goto W, Takada K,
Takahashi K, Hatano T, Tanaka S, Takashima T, Tomita S, Motomura H,
et al: Mesenchymal-epithelial transition and tumor vascular
remodeling in eribulin chemotherapy for breast cancer. Anticancer
Res. 38:401–410. 2018.PubMed/NCBI
|
9
|
Miyamoto M, Takano M, Kuwahara M, Soyama
H, Kato K, Matuura H, Sakamoto T, Takasaki K, Aoyama T, Yoshikawa T
and Furuya K: Efficacy of combination chemotherapy using irinotecan
and nedaplatin for patients with recurrent and refractory
endometrial carcinomas: Preliminary analysis and literature review.
Cancer Chemother Pharmacol. 81:111–117. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhu LQ, Zhang L, Zhang J, Chang GL, Liu G,
Yu DD, Yu XM, Zhao MS and Ye B: Evodiamine inhibits high-fat
diet-induced colitis-associated cancer in mice through regulating
the gut microbiota. J Integr Med. 19:56–65. 2021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Morazán-Fernández D, Mora J and
Molina-Mora JA: In silico pipeline to identify tumor-specific
antigens for cancer immunotherapy using exome sequencing data.
Phenomics. 3:130–137. 2023. View Article : Google Scholar : PubMed/NCBI
|
12
|
Wang M, Zhou B, Cong W, Zhang M, Li Z, Li
Y, Liang S, Chen K, Yang D and Wu Z: Amelioration of
AOM/DSS-Induced murine colitis-associated cancer by evodiamine
intervention is primarily associated with gut
microbiota-metabolism-inflammatory signaling axis. Front Pharmacol.
12:7976052021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lee IC and Bae JS: Hepatic protective
effects of jujuboside B through the modulation of inflammatory
pathways. Biotechnology and Bioprocess Engineering. 27:336–343.
2022. View Article : Google Scholar : PubMed/NCBI
|
14
|
Molagoda IMN, Lee KT, Athapaththu A, Choi
YH, Hwang J, Sim SJ, Kang S and Kim GY: Flavonoid glycosides from
ziziphus jujuba var. inermis (Bunge) rehder seeds inhibit
alpha-melanocyte-stimulating hormone-mediated melanogenesis. Int J
Mol Sci. 22:77012021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Guo L, Liang Y, Wang S, Li L, Cai L, Heng
Y, Yang J, Jin X, Zhang J, Yuan S, et al: Jujuboside B inhibits the
proliferation of breast cancer cell lines by inducing apoptosis and
autophagy. Front Pharmacol. 12:6688872021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang P, Lai X, Zhu MH, Shi J, Pan H,
Huang Y, Guo RJ, Lu Q, Fang C and Zhao M: Jujuboside B suppresses
angiogenesis and tumor growth via blocking VEGFR2 signaling
pathway. Heliyon. 9:e170722023. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ji Z, Li J and Wang J: Jujuboside B
inhibits neointimal hyperplasia and prevents vascular smooth muscle
cell dedifferentiation, proliferation, and migration via activation
of AMPK/PPAR-γ signaling. Front Pharmacol. 12:6721502021.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kim EK and Choi EJ: Pathological roles of
MAPK signaling pathways in human diseases. Biochim Biophys Acta.
1802:396–405. 2010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Moon H and Ro SW: MAPK/ERK signaling
pathway in hepatocellular carcinoma. Cancers (Basel). 13:30262021.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Pashirzad M, Khorasanian R, Fard MM,
Arjmand MH, Langari H, Khazaei M, Soleimanpour S, Rezayi M, Ferns
GA, Hassanian SM and Avan A: The therapeutic potential of MAPK/ERK
inhibitors in the treatment of colorectal cancer. Curr Cancer Drug
Targets. 21:932–943. 2021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu G, Wang T, Wang T, Song J and Zhou Z:
Effects of apoptosis-related proteins caspase-3, Bax and Bcl-2 on
cerebral ischemia rats. Biomed Rep. 1:861–867. 2013. View Article : Google Scholar : PubMed/NCBI
|
22
|
Dolka I, Krol M and Sapierzynski R:
Evaluation of apoptosis-associated protein (Bcl-2, Bax, cleaved
caspase-3 and p53) expression in canine mammary tumors: An
immunohistochemical and prognostic study. Res Vet Sci. 105:124–133.
2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun
X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death
Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jiang X, Stockwell BR and Conrad M:
Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol
Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang Y, Wei Z, Pan K, Li J and Chen Q: The
function and mechanism of ferroptosis in cancer. Apoptosis.
25:786–798. 2020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lachaier E, Louandre C, Godin C, Saidak Z,
Baert M, Diouf M, Chauffert B and Galmiche A: Sorafenib induces
ferroptosis in human cancer cell lines originating from different
solid tumors. Anticancer Res. 34:6417–6422. 2014.PubMed/NCBI
|
27
|
Yang R, Li Y, Wang X, Yan J, Pan D, Xu Y,
Wang L and Yang M: Doxorubicin loaded ferritin nanoparticles for
ferroptosis enhanced targeted killing of cancer cells. RSC Adv.
9:28548–28553. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu
Y and Dong W: ROS and ROS-mediated cellular signaling. Oxid Med
Cell Longev. 2016:43509652016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Cao JY and Dixon SJ: Mechanisms of
ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Tang D and Kroemer G: Ferroptosis. Curr
Biol. 30:R1292–R1297. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang B, Wang Y, Zhang J, Hu C, Jiang J, Li
Y and Peng Z: ROS-induced lipid peroxidation modulates cell death
outcome: Mechanisms behind apoptosis, autophagy, and ferroptosis.
Arch Toxicol. 97:1439–1451. 2023. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li Y, Du Y, Zhou Y, Chen Q, Luo Z, Ren Y,
Chen X and Chen G: Iron and copper: Critical executioners of
ferroptosis, cuproptosis and other forms of cell death. Cell Commun
Signal. 21:3272023. View Article : Google Scholar : PubMed/NCBI
|
33
|
Koppula P, Zhang Y, Zhuang L and Gan B:
Amino acid transporter SLC7A11/xCT at the crossroads of regulating
redox homeostasis and nutrient dependency of cancer. Cancer Commun
(Lond). 38:122018.PubMed/NCBI
|
34
|
Iida Y, Okamoto-Katsuyama M, Maruoka S,
Mizumura K, Shimizu T, Shikano S, Hikichi M, Takahashi M, Tsuya K,
Okamoto S, et al: Effective ferroptotic small-cell lung cancer cell
death from SLC7A11 inhibition by sulforaphane. Oncol Lett.
21:712021. View Article : Google Scholar : PubMed/NCBI
|
35
|
Seibt TM, Proneth B and Conrad M: Role of
GPX4 in ferroptosis and its pharmacological implication. Free Radic
Biol Med. 133:144–152. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Doll S, Proneth B, Tyurina YY, Panzilius
E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A,
et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular
lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Feng H, Schorpp K, Jin J, Yozwiak CE,
Hoffstrom BG, Decker AM, Rajbhandari P, Stokes ME, Bender HG, Csuka
JM, et al: Transferrin receptor is a specific ferroptosis marker.
Cell Rep. 30:3411–3423. e34172020. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sun Y, Liu WZ, Liu T, Feng X, Yang N and
Zhou HF: Signaling pathway of MAPK/ERK in cell proliferation,
differentiation, migration, senescence and apoptosis. J Recept
Signal Transduct Res. 35:600–604. 2015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Liu YC, Lin TJ, Chong KY, Chen GY, Kuo CY,
Lin YY, Chang CW, Hsiao TF, Wang CL, Shih YC and Yu CJ: Targeting
the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor
golgin-97 depletion-induced cancer progression in breast cancer.
Cell Commun Signal. 23:222025. View Article : Google Scholar : PubMed/NCBI
|
40
|
Braicu C, Buse M, Busuioc C, Drula R,
Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O, et al: A
comprehensive review on MAPK: A promising therapeutic target in
cancer. Cancers (Basel). 11:16182019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Fang JY and Richardson BC: The MAPK
signalling pathways and colorectal cancer. Lancet Oncol. 6:322–327.
2005. View Article : Google Scholar : PubMed/NCBI
|