
Effects of circulating RNAs on tumor metabolism in lung cancer (Review)
- Authors:
- Pengfei Zhao
- Zhengfeng Zhu
- Xinzhe Zheng
- Yongxiang Song
- Cheng Chen
- Gang Xu
- Xixian Ke
-
Affiliations: Department of Thoracic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China - Published online on: February 27, 2025 https://doi.org/10.3892/ol.2025.14950
- Article Number: 204
-
Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Manochakian R, James L, Azzouqa AG, Shi H, Zhang Y, Zhao Y, Zhou K and Lou Y: Emerging therapeutic agents for advanced non-small cell lung cancer. J Hematol Oncol. 13:582020. View Article : Google Scholar : PubMed/NCBI | |
Osmani L, Askin F, Gabrielson E and Li QK: Current WHO guidelines and the critical role of immunohistochemical markers in the subclassification of non-small cell lung carcinoma (NSCLC): Moving from targeted therapy to immunotherapy. Semin Cancer Biol. 52:103–109. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cheng C, Wang P, Yang Y, Du X, Xia H, Liu J, Lu L, Wu H and Liu Q: Smoking-induced M2-TAMs, via circEML4 in EVs, promote the progression of NSCLC through ALKBH5-regulated m6A modification of SOCS2 in NSCLC cells. Adv Sci (Weinh). 10:e23009532023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Liu T, Wang X, Jia Y and Cui H: Autophagy and glycometabolic reprograming in the malignant progression of lung cancer: A review. Technol Cancer Res Treat. 22:153303382311905452023. View Article : Google Scholar : PubMed/NCBI | |
Feng XY, Zhu SX, Pu KJ, Huang HJ, Chen YQ and Wang WT: New insight into circRNAs: Characterization, strategies, and biomedical applications. Exp Hematol Oncol. 12:912023. View Article : Google Scholar : PubMed/NCBI | |
Alkhathami AG, Sahib AS, Al Fayi MS, Fadhil AA, Jawad MA, Shafik SA, Sultan SJ, Almulla AF and Shen M: Glycolysis in human cancers: Emphasis circRNA/glycolysis axis and nanoparticles in glycolysis regulation in cancer therapy. Environ Res. 234:1160072023. View Article : Google Scholar : PubMed/NCBI | |
Kim J: Circular RNAs: Novel players in cancer mechanisms and therapeutic strategies. Int J Mol Sci. 25:101212024. View Article : Google Scholar : PubMed/NCBI | |
Du Z: CircNRIP1: An emerging star in multiple cancers. Pathol Res Pract. 241:1542812023. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Hu Z, Ru X, He M, Hu Z, Qin X, Xiao S, Liu D, Huang H and Wei Q: Hsa_circ_0002005 aggravates osteosarcoma by increasing cell proliferation, migration, and invasion. Gene. 942:1492212025. View Article : Google Scholar : PubMed/NCBI | |
Hu Y, Cai ZR, Huang RZ, Wang DS, Ju HQ and Chen DL: Circular RNA circPHLPP2 promotes tumor growth and anti-PD-1 resistance through binding ILF3 to regulate IL36γ transcription in colorectal cancer. Mol Cancer. 23:2722024. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Gu J, Huang J, Wen K, Zhang G, Chen Z and Wang Z: Characterization of circRNAs in established osimertinib-resistant non-small cell lung cancer cell lines. Int J Mol Med. 52:1022023. View Article : Google Scholar : PubMed/NCBI | |
Kamali MJ, Salehi M, Mostafavi M, Morovatshoar R, Akbari M, Latifi N, Barzegari O, Ghadimi F and Daraei A: Hijacking and rewiring of host CircRNA/miRNA/mRNA competitive endogenous RNA (ceRNA) regulatory networks by oncoviruses during development of viral cancers. Rev Med Virol. 34:e25302024. View Article : Google Scholar : PubMed/NCBI | |
Wang MH, Liu ZH, Zhang HX, Liu HC and Ma LH: Hsa_circRNA_000166 accelerates breast cancer progression via the regulation of the miR-326/ELK1 and miR-330-5p/ELK1 axes. Ann Med. 56:24245152024. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wang Y, Cheng J, Qiu L, Wang R, Zhang Y and Wang H: METTL3 -mediated m6A modification of circ_0000620 regulates cisplatin sensitivity and apoptosis in lung adenocarcinoma via the MiR-216b-5p/KRAS axis. Cell Signal. 123:1113492024. View Article : Google Scholar : PubMed/NCBI | |
Lu H, Han X, Ren J, Ren K, Li Z and Sun Z: Circular RNA HIPK3 induces cell proliferation and inhibits apoptosis in non-small cell lung cancer through sponging miR-149. Cancer Biol Ther. 21:113–121. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gadaleta E, Thorn GJ, Ross-Adams H, Jones LJ and Chelala C: Field cancerization in breast cancer. J Pathol. 257:561–574. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bi W, Huang J, Nie C, Liu B, He G, Han J, Pang R, Ding Z, Xu J and Zhang J: CircRNA circRNA_102171 promotes papillary thyroid cancer progression through modulating CTNNBIP1-dependent activation of β-catenin pathway. J Exp Clin Cancer Res. 37:2752018. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Su S, Wang P, Li J, Chen C, Xin H, Gong Y, Wang H, Ye X, Mao L, et al: Tumor-associated macrophage-induced circMRCKα encodes a peptide to promote glycolysis and progression in hepatocellular carcinoma. Cancer Lett. 591:2168722024. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Zhao X, Xu Y, Yan Y, Han L, Wei M and He M: Potential therapeutic strategy for cancer: Multi-dimensional cross-talk between circRNAs and parental genes. Cancer Lett. 588:2167942024. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Yin S, Yang K, Zhang B, Wu X, Zhang M and Gao D: CircRNA regulation of t cells in cancer: Unraveling potential targets. Int J Mol Sci. 25:63832024. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Sun J, Jiang Q, Zhao X, Huang H, Lei M, Jiang S, Yuan F and Liu Z: CircKIAA0182-YBX1 axis: A key driver of lung cancer progression and chemoresistance. Cancer Lett. 612:2174942025. View Article : Google Scholar : PubMed/NCBI | |
Jin J, Zhao Q, Wei Z, Chen K, Su Y, Hu X and Peng X: Glycolysis-cholesterol metabolic axis in immuno-oncology microenvironment: Emerging role in immune cells and immunosuppressive signaling. Cell Biosci. 13:1892023. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Hao Y, Liu Y, Zhong S, You Y, Ao K, Chong T, Luo X, Yin M, Ye M, et al: NAT10/ac4C/FOXP1 promotes malignant progression and facilitates immunosuppression by reprogramming glycolytic metabolism in cervical cancer. Adv Sci (Weinh). 10:e23027052023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Sun S, Qi Y, Dai Y, Hao Y, Xin M, Xu R, Chen H, Wu X, Liu Q, et al: Characterization of tumour microenvironment reprogramming reveals invasion in epithelial ovarian carcinoma. J Ovarian Res. 16:2002023. View Article : Google Scholar : PubMed/NCBI | |
Li S, Peng M, Tan S, Oyang L, Lin J, Xia L, Wang J, Wu N, Jiang X, Peng Q, et al: The roles and molecular mechanisms of non-coding RNA in cancer metabolic reprogramming. Cancer Cell Int. 24:372024. View Article : Google Scholar : PubMed/NCBI | |
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R and Karampoor S: Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res. 9:970–994. 2024. View Article : Google Scholar : PubMed/NCBI | |
Geng Y, Jiang J and Wu C: Function and clinical significance of circRNAs in solid tumors. J Hematol Oncol. 11:982018. View Article : Google Scholar : PubMed/NCBI | |
Jiang C, Zeng X, Shan R, Wen W, Li J, Tan J, Li L and Wan R: The emerging picture of the roles of CircRNA-CDR1as in cancer. Front Cell Dev Biol. 8:5904782020. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Yujiao W, Fang W, Linhui Y, Ziqi G, Zhichen W, Zirui W and Shengwang W: The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res. 53:402020. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Conn VM and Conn SJ: Past, present, and future strategies for detecting and quantifying circular RNA variants. FEBS J. Feb 11–2025.(Epub ahead of print). View Article : Google Scholar | |
Yang X, Xia J, Peng C and Cai W: Expression of plasma exosomal circLPAR1 in patients with gastric cancer and its clinical application value. Am J Cancer Res. 13:4269–4276. 2023.PubMed/NCBI | |
Liang Y, Wang H, Chen B, Mao Q, Xia W, Zhang T, Song X, Zhang Z, Xu L, Dong G and Jiang F: circDCUN1D4 suppresses tumor metastasis and glycolysis in lung adenocarcinoma by stabilizing TXNIP expression. Mol Ther Nucleic Acids. 23:355–368. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Gao X, Zhang M, Yan S, Sun C, Xiao F, Huang N, Yang X, Zhao K, Zhou H, et al: Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst. 110:304–315. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang B, Zhang J, Sun X, Yang C, Cheng G, Xu M, Li S and Wang L: Circulating exosomal hsa_circRNA_0039480 is highly expressed in gestational diabetes mellitus and may be served as a biomarker for early diagnosis of GDM. J Transl Med. 20:52022. View Article : Google Scholar : PubMed/NCBI | |
Safi A, Saberiyan M, Sanaei MJ, Adelian S, Davarani Asl F, Zeinaly M, Shamsi M and Ahmadi R: The role of noncoding RNAs in metabolic reprogramming of cancer cells. Cell Mol Biol Lett. 28:372023. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Tan S, Liu WR, Lei Q, Qiao W, Wu Y, Liu X, Cheng W, Wei YQ, Peng Y and Li W: RNA-Seq profiling of circular RNA in human lung adenocarcinoma and squamous cell carcinoma. Mol Cancer. 18:1342019. View Article : Google Scholar : PubMed/NCBI | |
Huijbers A, Tollenaar RAEM, v Pelt GW, Zeestraten ECM, Dutton S, McConkey CC, Domingo E, Smit VTHBM, Midgley R, Warren BF, et al: The proportion of tumor-stroma as a strong prognosticator for stage II and III colon cancer patients: Validation in the VICTOR trial. Ann Oncol. 24:179–185. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Xu J, Shen H, Dong W, Ni Y and Du J: Tumor-stroma ratio is an independent predictor for survival in NSCLC. Int J Clin Exp Pathol. 8:11348–11355. 2015.PubMed/NCBI | |
Gujam FJA, Edwards J, Mohammed ZMA, Going JJ and McMillan DC: The relationship between the tumour stroma percentage, clinicopathological characteristics and outcome in patients with operable ductal breast cancer. Br J Cancer. 111:157–165. 2014. View Article : Google Scholar : PubMed/NCBI | |
Riester M, Xu Q, Moreira A, Zheng J, Michor F and Downey RJ: The Warburg effect: Persistence of stem-cell metabolism in cancers as a failure of differentiation. Ann Oncol. 29:264–270. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D: Hallmarks of cancer: New dimensions. Cancer Discov. 12:31–46. 2022. View Article : Google Scholar : PubMed/NCBI | |
Cai ZR, Hu Y, Liao K, Li H, Chen DL and Ju HQ: Circular RNAs: Emerging regulators of glucose metabolism in cancer. Cancer Lett. 552:2159782023. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Wang Y, Fan Y, Fang N, Wang T, Xu T and Shu Y: CircRNAs in cancer metabolism: A review. J Hematol Oncol. 12:902019. View Article : Google Scholar : PubMed/NCBI | |
San-Millan I, Sparagna GC, Chapman HL, Warkins VL, Chatfield KC, Shuff SR, Martinez JL and Brooks GA: Chronic lactate exposure decreases mitochondrial function by inhibition of fatty acid uptake and cardiolipin alterations in neonatal rat cardiomyocytes. Front Nutr. 9:8094852022. View Article : Google Scholar : PubMed/NCBI | |
Brooks GA: Lactate as a fulcrum of metabolism. Redox Biol. 35:1014542020. View Article : Google Scholar : PubMed/NCBI | |
Qin R, Fan X, Huang Y, Chen S, Ding R, Yao Y, Wu R, Duan Y, Li X, Khan HU, et al: Role of glucose metabolic reprogramming in colorectal cancer progression and drug resistance. Transl Oncol. 50:1021562024. View Article : Google Scholar : PubMed/NCBI | |
Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, Menk AV, Rittenhouse NL, DePeaux K, Whetstone RD, et al: Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 591:645–651. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhou H, Liu Y, Zhao X, Wang S and Lin Z: miR-485-5p/NQO1 axis drives colorectal cancer progression by regulating apoptosis and aerobic glycolysis. Cancer Cell Int. 25:412025. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Ren B, Ren J, Gu M, You L and Zhao Y: The significant role of amino acid metabolic reprogramming in cancer. Cell Commun Signal. 22:3802024. View Article : Google Scholar : PubMed/NCBI | |
Lin Q, Jiang H and Lin D: Circular RNA ITCH downregulates GLUT1 and suppresses glucose uptake in melanoma to inhibit cancer cell proliferation. J Dermatolog Treat. 32:231–235. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cao L, Wang M, Dong Y, Xu B, Chen J, Ding Y, Qiu S, Li L, Karamfilova Zaharieva E, Zhou X and Xu Y: Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis. 11:1452020. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Pan X, Zhu D, Deng Z, Jiang R and Wang X: Circular RNA MAT2B promotes glycolysis and malignancy of hepatocellular carcinoma through the miR-338-3p/PKM2 axis under hypoxic stress. Hepatology. 70:1298–1316. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang B, Zhao F, Yao L, Zong Z and Xiao L: CircRNA circ_0006677 inhibits the progression and glycolysis in non-small-cell lung cancer by sponging miR-578 and Regulating SOCS2 expression. Front Pharmacol. 12:6570532021. View Article : Google Scholar : PubMed/NCBI | |
DeBerardinis RJ and Thompson CB: Cellular metabolism and disease: What do metabolic outliers teach us? Cell. 148:1132–1144. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pascale RM, Calvisi DF, Simile MM, Feo CF and Feo F: The Warburg effect 97 years after its discovery. Cancers (Basel). 12:28192020. View Article : Google Scholar : PubMed/NCBI | |
Dong G, Mao Q, Xia W, Xu Y, Wang J, Xu L and Jiang F: PKM2 and cancer: The function of PKM2 beyond glycolysis. Oncol Lett. 11:1980–1986. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fan C, Tang Y, Wang J, Xiong F, Guo C, Wang Y, Zhang S, Gong Z, Wei F, Yang L, et al: Role of long non-coding RNAs in glucose metabolism in cancer. Mol Cancer. 16:1302017. View Article : Google Scholar : PubMed/NCBI | |
Yadav D, Yadav A, Bhattacharya S, Dagar A, Kumar V and Rani R: GLUT and HK: Two primary and essential key players in tumor glycolysis. Semin Cancer Biol. 100:17–27. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Xi W, Li H, Yang M and Yao X: Circular RNA circ-ACACA regulates proliferation, migration and glycolysis in non-small-cell lung carcinoma via miR-1183 and PI3K/PKB pathway. Int J Mol Med. 45:1814–1824. 2020.PubMed/NCBI | |
Zhou J, Zhang S, Chen Z, He Z, Xu Y and Li Z: CircRNA-ENO1 promoted glycolysis and tumor progression in lung adenocarcinoma through upregulating its host gene ENO1. Cell Death Dis. 10:8852019. View Article : Google Scholar : PubMed/NCBI | |
Xiong S, Li D, Wang D, Huang L, Liang G, Wu Z, Long J, Yang D, Teng Y, Lei S and Li Y: Circular RNA MYLK promotes glycolysis and proliferation of non-small cell lung cancer cells by sponging miR-195-5p and increasing glucose transporter member 3 expression. Cancer Manag Res. 12:5469–5478. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Cai S, Qin L, Feng Y, Ding M, Luo Z, Shan J and Di L: Alkaloids of aconiti lateralis radix praeparata inhibit growth of non-small cell lung cancer by regulating PI3K/Akt-mTOR signaling and glycolysis. Commun Biol. 7:11182024. View Article : Google Scholar : PubMed/NCBI | |
Starska K, Forma E, Jóźwiak P, Bryś M, Lewy-Trenda I, Brzezińska-Błaszczyk E and Krześlak A: Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer-the relationship with regulatory hypoxia-inducible factor-1α expression, tumor invasiveness, and patient prognosis. Tumour Biol. 36:2309–2321. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gu F, Zhang J, Yan L and Li D: CircHIPK3/miR-381-3p axis modulates proliferation, migration, and glycolysis of lung cancer cells by regulating the AKT/mTOR signaling pathway. Open Life Sci. 15:683–695. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lan T, Gao F, Cai Y, Lv Y, Zhu J, Liu H, Xie S, Wan H, He H, Xie K, et al: The protein circPETH-147aa regulates metabolic reprogramming in hepatocellular carcinoma cells to remodel immunosuppressive microenvironment. Nat Commun. 16:3332025. View Article : Google Scholar : PubMed/NCBI | |
Bian X, Liu R, Meng Y, Xing D, Xu D and Lu Z: Lipid metabolism and cancer. J Exp Med. 218:e202016062021. View Article : Google Scholar : PubMed/NCBI | |
Gómez de Cedrón M and Ramírez de Molina A: Microtargeting cancer metabolism: Opening new therapeutic windows based on lipid metabolism. J Lipid Res. 57:193–206. 2016. View Article : Google Scholar : PubMed/NCBI | |
Röhrig F and Schulze A: The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 16:732–749. 2016. View Article : Google Scholar : PubMed/NCBI | |
Khan F, Elsori D, Verma M, Pandey S, Obaidur Rab S, Siddiqui S, Alabdallah NM, Saeed M and Pandey P: Unraveling the intricate relationship between lipid metabolism and oncogenic signaling pathways. Front Cell Dev Biol. 12:13990652024. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Shi Y, Wu M, Xu M, Zhang F, He Z and Tang M: JAG1 promotes migration, invasion, and adhesion of triple-negative breast cancer cells by promoting angiogenesis. Nan Fang Yi Ke Da Xue Xue Bao. 42:1100–1108. 2022.(In Chinese). PubMed/NCBI | |
Cheng X, Wang W, Zhang Z, Zhang H, Zhu P, He R, Wu M, Zhou T, Jiang Y, Jiang L, et al: Distinctly altered lipid components in hepatocellular carcinoma relate to impaired T cell-dependent antitumor immunity. Hepatol Int. 18:582–594. 2024. View Article : Google Scholar : PubMed/NCBI | |
Hong X, Li Q, Li J, Chen K, He Q, Zhao Y, Liang Y, Zhao Y, Qiao H, Liu N, et al: CircIPO7 promotes nasopharyngeal carcinoma metastasis and cisplatin chemoresistance by facilitating YBX1 nuclear localization. Clin Cancer Res. 28:4521–4535. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li H, Luo F, Jiang X, Zhang W, Xiang T, Pan Q, Cai L, Zhao J, Weng D, Li Y, et al: CircITGB6 promotes ovarian cancer cisplatin resistance by resetting tumor-associated macrophage polarization toward the M2 phenotype. J Immunother Cancer. 10:e0040292022. View Article : Google Scholar : PubMed/NCBI | |
Wu YL, Li HF, Chen HH and Lin H: Emergent roles of circular RNAs in metabolism and metabolic disorders. Int J Mol Sci. 23:10322022. View Article : Google Scholar : PubMed/NCBI | |
Hang D, Zhou J, Qin N, Zhou W, Ma H, Jin G, Hu Z, Dai J and Shen H: A novel plasma circular RNA circFARSA is a potential biomarker for non-small cell lung cancer. Cancer Med. 7:2783–2791. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Xu Y, Ma L, Yu K, Niu Y, Xu X, Shi Y, Guo S, Xue X, Wang Y, et al: Essential roles of exosome and circRNA_101093 on ferroptosis desensitization in lung adenocarcinoma. Cancer Commun (Lond). 42:287–313. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Yao Y, Ge T, Ge S, Jia R, Song X and Zhuang A: Amino acid metabolism reprogramming: Shedding new light on T cell anti-tumor immunity. J Exp Clin Cancer Res. 42:2912023. View Article : Google Scholar : PubMed/NCBI | |
Lv H, Shi Z, Sui A, Zhang Y, Peng L, Wang M and Zhang F: hsa_circ_0000518 facilitates non-small-cell lung cancer progression via moderating miR-330-3p and positively regulating SLC1A5. J Immunol Res. 2022:49969802022. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Peng J and Yuan Y: CircRNA OXCT1 promotes the malignant progression and glutamine metabolism of non-small cell lung cancer by absorbing miR-516b-5p and upregulating SLC1A5. Cell Cycle. 22:1182–1195. 2023. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Pathria G, Heynen-Genel S, Jackson M, James B, Yin J, Scott DA and Ronai ZA: Identification and characterization of IMD-0354 as a glutamine carrier protein inhibitor in melanoma. Mol Cancer Ther. 20:816–832. 2021. View Article : Google Scholar : PubMed/NCBI | |
Amelio I, Cutruzzolá F, Antonov A, Agostini M and Melino G: Serine and glycine metabolism in cancer. Trends Biochem Sci. 39:191–198. 2014. View Article : Google Scholar : PubMed/NCBI | |
Qiu W, Zhang S, Yu W, Liu J and Wu H: Non-coding RNAs in hepatocellular carcinoma metastasis: Remarkable indicators and potential oncogenic mechanism. Comput Biol Med. 180:1088672024. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Ng W, Liu Y, Wang L, Gong C, Zhou Y, Fang C, Zhu S and Yao C: Rocaglamide promotes infiltration and differentiation of T cells and coordinates with PD-1 inhibitor to overcome checkpoint resistance in multiple tumor models. Cancer Immunol Immunother. 73:1372024. View Article : Google Scholar : PubMed/NCBI | |
Faubert B, Solmonson A and DeBerardinis RJ: Metabolic reprogramming and cancer progression. Science. 368:eaaw54732020. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Tong H, Chen J, Tang C, Wang S, Si Y, Wang S and Tang Z: CircRNA MBOAT2 promotes intrahepatic cholangiocarcinoma progression and lipid metabolism reprogramming by stabilizing PTBP1 to facilitate FASN mRNA cytoplasmic export. Cell Death Dis. 14:202023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Wu C, Xu J, Gong Z, Cao X, Huang J, Dong H, Zhu W, Huang F, Zhou C and Wang M: GC-MSC-derived circ_0024107 promotes gastric cancer cell lymphatic metastasis via fatty acid oxidation metabolic reprogramming mediated by the miR-5572/6855-5p/CPT1A axis. Oncol Rep. 50:1382023. View Article : Google Scholar : PubMed/NCBI | |
Gao X, Sun Z, Liu X, Luo J, Liang X, Wang H, Zhou J, Yang C, Wang T and Li J: 127aa encoded by circSpdyA promotes FA synthesis and NK cell repression in breast cancers. Cell Death Differ. Oct 14–2024.(Epub ahead of print). View Article : Google Scholar | |
Sabit H, Arneth B, Pawlik TM, Abdel-Ghany S, Ghazy A, Abdelazeem RM, Alqosaibi A, Al-Dhuayan IS, Almulhim J, Alrabiah NA and Hashash A: Leveraging single-cell multi-omics to decode tumor microenvironment diversity and therapeutic resistance. Pharmaceuticals (Basel). 18:752025. View Article : Google Scholar : PubMed/NCBI | |
DeSouza NR, Nielsen KJ, Jarboe T, Carnazza M, Quaranto D, Kopec K, Suriano R, Islam HK, Tiwari RK and Geliebter J: Dysregulated expression patterns of circular RNAs in cancer: Uncovering molecular mechanisms and biomarker potential. Biomolecules. 14:3842024. View Article : Google Scholar : PubMed/NCBI | |
Xie C, Hao X, Yuan H, Wang C, Sharif R and Yu H: Crosstalk between circRNA and tumor microenvironment of hepatocellular carcinoma: Mechanism, function and applications. Onco Targets Ther. 17:7–26. 2024. View Article : Google Scholar : PubMed/NCBI | |
Yin WB, Yan MG, Fang X, Guo JJ, Xiong W and Zhang RP: Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin Chim Acta. 487:363–368. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Yu Q, Song T, Wang Z, Song L, Yang Y, Shao J, Li J, Ni Y, Chao N, et al: The heterogeneous immune landscape between lung adenocarcinoma and squamous carcinoma revealed by single-cell RNA sequencing. Signal Transduct Target Ther. 7:2892022. View Article : Google Scholar : PubMed/NCBI | |
Nicot C: RNA-Seq reveal the circular RNAs landscape of lung cancer. Mol Cancer. 18:1832019. View Article : Google Scholar : PubMed/NCBI | |
Qu L, Yi Z, Shen Y, Lin L, Chen F, Xu Y, Wu Z, Tang H, Zhang X, Tian F, et al: Circular RNA vaccines against SARS-CoV-2 and emerging variants. Cell. 185:1728–1744.e16. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li H, Peng K, Yang K, Ma W, Qi S, Yu X, He J, Lin X and Yu G: Circular RNA cancer vaccines drive immunity in hard-to-treat malignancies. Theranostics. 12:6422–6436. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Xu C, Yang Z, Zhou J, Peng W, Zhang X, Li H, Qu S and Tao K: Circular RNAs in tumor immunity and immunotherapy. Mol Cancer. 23:1712024. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Xu H, Li X, Liu H, Sun Z, Li J, Tang Y, Gao H, Zhao K, Ding C and Gao X: Targeting tumorous Circ-E-Cadherinencoded C-E-Cad inhibits the recruitment and function of breast cancer-associated myeloid-derived suppressor cells. Pharmacol Res. 204:1072042024. View Article : Google Scholar : PubMed/NCBI | |
Mu M, Niu W, Chu F, Dong Q, Hu S and Niu C: CircSOBP suppresses the progression of glioma by disrupting glycolysis and promoting the MDA5-mediated immune response. iScience. 26:1078972023. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Chen Z, Zhang Y, Wang J, Zhang Z, Wu J, Mao J and Zuo X: CircRHBDD1 augments metabolic rewiring and restricts immunotherapy efficacy via m6A modification in hepatocellular carcinoma. Mol Ther Oncolytics. 24:755–771. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zang X, He XY, Xiao CM, Lin Q, Wang MY, Liu CY, Kong LY, Chen Z and Xia YZ: Circular RNA-encoded oncogenic PIAS1 variant blocks immunogenic ferroptosis by modulating the balance between SUMOylation and phosphorylation of STAT1. Mol Cancer. 23:2072024. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Qiu Z, Chi-Shing Cho W, Liu Z, Chen S, Li H, Chen K, Li Y, Zuo C and Qiu M: Synthetic circRNA therapeutics: Innovations, strategies, and future horizons. MedComm (2020). 5:e7202024. View Article : Google Scholar : PubMed/NCBI | |
Dance A: Circular logic: Understanding RNA's strangest form yet. Nature. 635:511–513. 2024. View Article : Google Scholar : PubMed/NCBI | |
Aquino-Jarquin G: CircRNA knockdown based on antisense strategies. Drug Discov Today. 29:1040662024. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Zhong Y, Wang X, Shen J and An W: Advances in circular RNA and its applications. Int J Med Sci. 19:975–985. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen YG, Kim MV, Chen X, Batista PJ, Aoyama S, Wilusz JE, Iwasaki A and Chang HY: Sensing self and foreign circular RNAs by intron identity. Mol Cell. 67:228–238.e5. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, et al: N6-methyladenosine modification controls circular RNA immunity. Mol Cell. 76:96–109.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hashimoto K, Nishimura S and Akagi M: Lung adenocarcinoma presenting as a soft tissue metastasis to the shoulder: A case report. Medicina (Kaunas). 57:1812021. View Article : Google Scholar : PubMed/NCBI | |
Cui YS, Zheng X, Wu YN, Yao YH, Wang J, Liu ZQ and Sun GG: The RNA binding protein QKI can promote gastric cancer by regulating cleavage of EMT-related gene transcripts to form circRNAs. Chin Pharmacol Bull. 40:1462–1473. 2024.(In Chinese). |