
ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review)
- Authors:
- Lokman Varisli
- Panagiotis Zoumpourlis
- Demetrios A. Spandidos
- Vassilis Zoumpourlis
- Spiros Vlahopoulos
-
Affiliations: Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey, Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece, First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece - Published online on: March 4, 2025 https://doi.org/10.3892/ol.2025.14959
- Article Number: 213
-
Copyright: © Varisli et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Brown G: Targeting the retinoic acid pathway to eradicate cancer stem cells. Int J Mol Sci. 24:23732023. View Article : Google Scholar : PubMed/NCBI | |
Dick JE: Stem cell concepts renew cancer research. Blood. 112:4793–4807. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hassan G and Seno M: Blood and cancer: Cancer stem cells as origin of hematopoietic cells in solid tumor microenvironments. Cells. 9:12932020. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Cong Y, Wang D, Sun Y, Deng L, Liu Y, Martin-Trevino R, Shang L, McDermott SP, Landis MD, et al: Breast cancer stem cells transition between epithelial and mesenchymal states reflective of their normal counterparts. Stem Cell Reports. 2:78–91. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li W, Ma H, Zhang J, Zhu L, Wang C and Yang Y: Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep. 7:138562017. View Article : Google Scholar : PubMed/NCBI | |
Kamalabadi Farahani M, Farjadmehr M, Atashi A, Momeni A and Behzadifard M: Concise review: Breast cancer stems cells and their role in metastases. Ann Med Surg (Lond). 86:5266–5275. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Shen S, Zhou Y, Mao F, Guan J, Lin Y, Xu Y and Sun Q: ALDH1 is a better clinical indicator for relapse of invasive ductal breast cancer than the CD44+/CD24-phenotype. Med Oncol. 31:8642014. View Article : Google Scholar : PubMed/NCBI | |
Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA and Allan AL: High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 13:2236–2252. 2009. View Article : Google Scholar : PubMed/NCBI | |
Brugnoli F, Grassilli S, Al-Qassab Y, Capitani S and Bertagnolo V: CD133 in breast cancer cells: More than a stem cell marker. J Oncol. 2019:75126322019. View Article : Google Scholar : PubMed/NCBI | |
Xanthis V, Mantso T, Dimtsi A, Pappa A and Fadouloglou VE: Human aldehyde dehydrogenases: A superfamily of similar yet different proteins highly related to cancer. Cancers (Basel). 15:44192023. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Thompson DC, Koppaka V, Jester JV and Vasiliou V: Ocular aldehyde dehydrogenases: Protection against ultraviolet damage and maintenance of transparency for vision. Prog Retin Eye Res. 33:28–39. 2013. View Article : Google Scholar : PubMed/NCBI | |
Shortall K, Djeghader A, Magner E and Soulimane T: Insights into aldehyde dehydrogenase enzymes: A structural perspective. Front Mol Biosci. 8:6595502021. View Article : Google Scholar : PubMed/NCBI | |
Sládek NE: Human aldehyde dehydrogenases: Potential pathological, pharmacological, and toxicological impact. J Biochem Mol Toxicol. 17:7–23. 2003. View Article : Google Scholar : PubMed/NCBI | |
O'Brien PJ, Siraki AG and Shangari N: Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol. 35:609–662. 2005. View Article : Google Scholar : PubMed/NCBI | |
Marchitti SA, Brocker C, Stagos D and Vasiliou V: Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily. Expert Opin Drug Metab Toxicol. 4:697–720. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ayala A, Muñoz MF and Argüelles S: Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014:3604382014. View Article : Google Scholar : PubMed/NCBI | |
Sinharoy P, McAllister SL, Vasu M and Gross ER: Environmental aldehyde sources and the health implications of exposure. Adv Exp Med Biol. 1193:35–52. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zanoni M, Bravaccini S, Fabbri F and Arienti C: Emerging roles of aldehyde dehydrogenase isoforms in anti-cancer therapy resistance. Front Med (Lausanne). 9:7957622022. View Article : Google Scholar : PubMed/NCBI | |
Jackson B, Brocker C, Thompson DC, Black W, Vasiliou K, Nebert DW and Vasiliou V: Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum Genomics. 5:283–303. 2011. View Article : Google Scholar : PubMed/NCBI | |
Morgan CA, Parajuli B, Buchman CD, Dria K and Hurley TD: N,N-diethylaminobenzaldehyde (DEAB) as a substrate and mechanism-based inhibitor for human ALDH isoenzymes. Chem Biol Interact. 234:18–28. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gomez-Salazar MA, Wang Y, Thottappillil N, Hardy RW, Alexandre M, Höller F, Martin N, Gonzalez-Galofre ZN, Stefancova D, Medici D, et al: Aldehyde dehydrogenase, a marker of normal and malignant stem cells, typifies mesenchymal progenitors in perivascular niches. Stem Cells Transl Med. 12:474–484. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ambroziak W, Izaguirre G and Pietruszko R: Metabolism of retinaldehyde and other aldehydes in soluble extracts of human liver and kidney. J Biol Chem. 274:33366–33373. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bui TBC, Nosaki S, Kokawa M, Xu Y, Kitamura Y, Tanokura M, Hachimura S and Miyakawa T: Evaluation of spice and herb as phyto-derived selective modulators of human retinaldehyde dehydrogenases using a simple in vitro method. Biosci Rep. 41:BSR202104912021. View Article : Google Scholar : PubMed/NCBI | |
Vasiliou V, Pappa A and Estey T: Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab Rev. 36:279–299. 2004. View Article : Google Scholar : PubMed/NCBI | |
Egea J, Fabregat I, Frapart YM, Ghezzi P, Görlach A, Kietzmann T, Kubaichuk K, Knaus UG, Lopez MG, Olaso-Gonzalez G, et al: European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS). Redox Biol. 13:94–162. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dinavahi SS, Bazewicz CG, Gowda R and Robertson GP: Aldehyde dehydrogenase inhibitors for cancer therapeutics. Trends Pharmacol Sci. 40:774–789. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xia J, Li S, Liu S and Zhang L: Aldehyde dehydrogenase in solid tumors and other diseases: Potential biomarkers and therapeutic targets. MedComm (2020). 4:e1952023. View Article : Google Scholar : PubMed/NCBI | |
Lavudi K, Nuguri SM, Pandey P, Kokkanti RR and Wang QE: ALDH and cancer stem cells: Pathways, challenges, and future directions in targeted therapy. Life Sci. 356:1230332024. View Article : Google Scholar : PubMed/NCBI | |
Al-Shamma SA, Zaher DM, Hersi F, Abu Jayab NN and Omar HA: Targeting aldehyde dehydrogenase enzymes in combination with chemotherapy and immunotherapy: An approach to tackle resistance in cancer cells. Life Sci. 320:1215412023. View Article : Google Scholar : PubMed/NCBI | |
Stagos D, Chen Y, Cantore M, Jester JV and Vasiliou V: Corneal aldehyde dehydrogenases: multiple functions and novel nuclear localization. Brain Res Bull. 81:211–218. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Sheng D, Wang D, Ma W, Deng Q, Deng L and Liu S: Identification of cancer-type specific expression patterns for active aldehyde dehydrogenase (ALDH) isoforms in ALDEFLUOR assay. Cell Biol Toxicol. 35:161–177. 2019. View Article : Google Scholar : PubMed/NCBI | |
Maggio V, Cánovas V, Félix AJ, Gómez V, de Torres I, Semidey ME, Morote J, Noé V, Ciudad CJ and Paciucci R: A novel DNA-binding motif in prostate tumor overexpressed-1 (PTOV1) required for the expression of ALDH1A1 and CCNG2 in cancer cells. Cancer Lett. 452:158–167. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lei F, Zhang L, Li X, Lin X, Wu S, Li F and Liu J: Overexpression of prostate tumor overexpressed 1 correlates with tumor progression and predicts poor prognosis in breast cancer. BMC Cancer. 14:4572014. View Article : Google Scholar : PubMed/NCBI | |
Qing L, Li Q and Dong Z: MUC1: An emerging target in cancer treatment and diagnosis. Bull Cancer. 109:1202–1216. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Zhang Z, Zhang S, Zhu P, Ko JK and Yung KK: MUC1: Structure, function, and clinic application in epithelial cancers. Int J Mol Sci. 22:65672021. View Article : Google Scholar : PubMed/NCBI | |
Ren J, Agata N, Chen D, Li Y, Yu WH, Huang L, Raina D, Chen W, Kharbanda S and Kufe D: Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents. Cancer Cell. 5:163–175. 2004. View Article : Google Scholar : PubMed/NCBI | |
Alam M, Ahmad R, Rajabi H, Kharbanda A and Kufe D: MUC1-C oncoprotein activates ERK-C/EBPβ signaling and induction of aldehyde dehydrogenase 1A1 in breast cancer cells. J Biol Chem. 288:30892–30903. 2013. View Article : Google Scholar : PubMed/NCBI | |
Alam M, Rajabi H, Ahmad R, Jin C and Kufe D: Targeting the MUC1-C oncoprotein inhibits self-renewal capacity of breast cancer cells. Oncotarget. 5:2622–2634. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jang GB, Hong IS, Kim RJ, Lee SY, Park SJ, Lee ES, Park JH, Yun CH, Chung JU, Lee KJ, et al: Wnt/β-Catenin Small-molecule inhibitor CWP232228 preferentially inhibits the growth of breast cancer Stem-like cells. Cancer Res. 75:1691–1702. 2015. View Article : Google Scholar : PubMed/NCBI | |
King TD, Suto MJ and Li Y: The Wnt/β-catenin signaling pathway: A potential therapeutic target in the treatment of triple negative breast cancer. J Cell Biochem. 113:13–18. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cojoc M, Peitzsch C, Kurth I, Trautmann F, Kunz-Schughart LA, Telegeev GD, Stakhovsky EA, Walker JR, Simin K, Lyle S, et al: Aldehyde dehydrogenase is regulated by β-Catenin/TCF and promotes radioresistance in prostate cancer progenitor cells. Cancer Res. 75:1482–1494. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hoshino Y, Nishida J, Katsuno Y, Koinuma D, Aoki T, Kokudo N, Miyazono K and Ehata S: Smad4 decreases the population of pancreatic Cancer-initiating cells through transcriptional repression of ALDH1A1. Am J Pathol. 185:1457–1470. 2015. View Article : Google Scholar : PubMed/NCBI | |
Varisli L and Vlahopoulos S: Epithelial-Mesenchymal transition in acute leukemias. Int J Mol Sci. 25:21732024. View Article : Google Scholar : PubMed/NCBI | |
Kuburich NA, Sabapathy T, Demestichas BR, Maddela JJ, den Hollander P and Mani SA: Proactive and reactive roles of TGF-β in cancer. Semin Cancer Biol. 95:120–139. 2023. View Article : Google Scholar : PubMed/NCBI | |
Baba AB, Rah B, Bhat GR, Mushtaq I, Parveen S, Hassan R, Hameed Zargar M and Afroze D: Transforming growth Factor-Beta (TGF-β) signaling in Cancer-A betrayal within. Front Pharmacol. 13:7912722022. View Article : Google Scholar : PubMed/NCBI | |
Varisli L, Tolan V, Cen JH, Vlahopoulos S and Cen O: Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncol Res. 30:137–155. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yu Q, Biswas S, Ma G, Zhao P, Li B and Li J: Canonical NF-κB signaling maintains corneal epithelial integrity and prevents corneal aging via retinoic acid. Elife. 10:e673152021. View Article : Google Scholar : PubMed/NCBI | |
Pavitra E, Kancharla J, Gupta VK, Prasad K, Sung JY, Kim J, Tej MB, Choi R, Lee JH, Han YK, et al: The role of NF-κB in breast cancer initiation, growth, metastasis, and resistance to chemotherapy. Biomed Pharmacother. 163:1148222023. View Article : Google Scholar : PubMed/NCBI | |
Vlahopoulos SA, Cen O, Hengen N, Agan J, Moschovi M, Critselis E, Adamaki M, Bacopoulou F, Copland JA, Boldogh I, et al: Dynamic aberrant NF-κB spurs tumorigenesis: A new model encompassing the microenvironment. Cytokine Growth Factor Rev. 26:389–403. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lambrou GI, Hatziagapiou K and Vlahopoulos S: Inflammation and tissue homeostasis: The NF-κB system in physiology and malignant progression. Mol Biol Rep. 47:4047–4063. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vlahopoulos SA: Divergent processing of cell stress signals as the basis of cancer progression: Licensing NFκB on chromatin. Int J Mol Sci. 25:86212024. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Mo Y, Li MT, Zou SW, Cheng ZL, Sun YP, Xiong Y, Guan KL and Lei QY: NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J Clin Invest. 124:5453–5465. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Nikhil K, Viccaro K, Chang L, White J and Shah K: Phosphorylation-dependent regulation of ALDH1A1 by Aurora kinase A: Insights on their synergistic relationship in pancreatic cancer. BMC Biol. 15:102017. View Article : Google Scholar : PubMed/NCBI | |
Ross AC and Moran NE: Our current dietary reference intakes for vitamin A-Now 20 years old. Curr Dev Nutr. 4:nzaa0962020. View Article : Google Scholar : PubMed/NCBI | |
Surman SL, Penkert RR, Sealy RE, Jones BG, Marion TN, Vogel P and Hurwitz JL: Consequences of vitamin a deficiency: Immunoglobulin dysregulation, squamous cell metaplasia, infectious disease, and death. Int J Mol Sci. 21:55702020. View Article : Google Scholar : PubMed/NCBI | |
Kedishvili NY: Enzymology of retinoic acid biosynthesis and degradation. J Lipid Res. 54:1744–1760. 2013. View Article : Google Scholar : PubMed/NCBI | |
Belyaeva OV, Adams MK, Popov KM and Kedishvili NY: Generation of retinaldehyde for retinoic acid biosynthesis. Biomolecules. 10:52019. View Article : Google Scholar : PubMed/NCBI | |
Giguère V and Evans RM: Chronicle of a discovery: The retinoic acid receptor. J Mol Endocrinol. 69:T1–T11. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bastien J and Rochette-Egly C: Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene. 328:1–16. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Teh SS, Lau HLN, Xiao J and Mah SH: Retinoids as anti-cancer agents and their mechanisms of action. Am J Cancer Res. 12:938–960. 2022.PubMed/NCBI | |
di Masi A, Leboffe L, De Marinis E, Pagano F, Cicconi L, Rochette-Egly C, Lo-Coco F, Ascenzi P and Nervi C: Retinoic acid receptors: From molecular mechanisms to cancer therapy. Mol Aspects Med. 41:1–115. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rastinejad F: Retinoic acid receptor structures: The journey from single domains to full-length complex. J Mol Endocrinol. 69:T25–T36. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wolf G: Retinoic acid as cause of cell proliferation or cell growth inhibition depending on activation of one of two different nuclear receptors. Nutr Rev. 66:55–59. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ross-Innes CS, Stark R, Holmes KA, Schmidt D, Spyrou C, Russell R, Massie CE, Vowler SL, Eldridge M and Carroll JS: Cooperative interaction between retinoic acid receptor-alpha and estrogen receptor in breast cancer. Genes Dev. 24:171–182. 2010. View Article : Google Scholar : PubMed/NCBI | |
Piskunov A, Al Tanoury Z and Rochette-Egly C: Nuclear and extra-nuclear effects of retinoid acid receptors: How they are interconnected. Subcell Biochem. 70:103–127. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sharma S, Sharma P, Bailey T, Bhattarai S, Subedi U, Miller C, Ara H, Kidambi S, Sun H, Panchatcharam M and Miriyala S: Electrophilic aldehyde 4-Hydroxy-2-nonenal mediated signaling and mitochondrial dysfunction. Biomolecules. 12:15552022. View Article : Google Scholar : PubMed/NCBI | |
Hu W, Feng Z, Eveleigh J, Iyer G, Pan J, Amin S, Chung FL and Tang MS: The major lipid peroxidation product, trans-4-hydroxy-2-nonenal, preferentially forms DNA adducts at codon 249 of human p53 gene, a unique mutational hotspot in hepatocellular carcinoma. Carcinogenesis. 23:1781–1789. 2002. View Article : Google Scholar : PubMed/NCBI | |
Suman S, Kumar S, N'Gouemo P and Datta K: Increased DNA double-strand break was associated with downregulation of repair and upregulation of apoptotic factors in rat hippocampus after alcohol exposure. Alcohol. 54:45–50. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Wang H, Wu K and Liu Z: Expression of 4-hydroxynonenal in esophageal squamous cell carcinoma. Oncol Lett. 14:35–40. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Huycke MM, Herman TS and Wang X: Glutathione S-transferase alpha 4 induction by activator protein 1 in colorectal cancer. Oncogene. 35:5795–5806. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gęgotek A, Nikliński J, Žarković N, Žarković K, Waeg G, Łuczaj W, Charkiewicz R and Skrzydlewska E: Lipid mediators involved in the oxidative stress and antioxidant defence of human lung cancer cells. Redox Biol. 9:210–219. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fritz KS and Petersen DR: An overview of the chemistry and biology of reactive aldehydes. Free Radic Biol Med. 59:85–91. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sener DE, Gönenç A, Akinci M and Torun M: Lipid peroxidation and total antioxidant status in patients with breast cancer. Cell Biochem Funct. 25:377–382. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hassan W, Noreen H, Rehman S, Kamal MA and da Rocha JBT: Association of oxidative stress with neurological disorders. Curr Neuropharmacol. 20:1046–1072. 2022. View Article : Google Scholar : PubMed/NCBI | |
Menon B, Ramalingam K and Kumar R: Evaluating the role of oxidative stress in acute ischemic stroke. J Neurosci Rural Pract. 11:156–159. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jové M, Mota-Martorell N, Pradas I, Martín-Gari M, Ayala V and Pamplona R: The advanced lipoxidation End-product Malondialdehyde-lysine in aging and longevity. Antioxidants (Basel). 9:11322020. View Article : Google Scholar : PubMed/NCBI | |
Naudí A, Jové M, Ayala V, Cabré R, Portero-Otín M and Pamplona R: Non-enzymatic modification of aminophospholipids by carbonyl-amine reactions. Int J Mol Sci. 14:3285–3313. 2013. View Article : Google Scholar : PubMed/NCBI | |
Plastaras JP, Dedon PC and Marnett LJ: Effects of DNA structure on oxopropenylation by the endogenous mutagens malondialdehyde and base propenal. Biochemistry. 41:5033–5042. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wauchope OR, Mitchener MM, Beavers WN, Galligan JJ, Camarillo JM, Sanders WD, Kingsley PJ, Shim HN, Blackwell T, Luong T, et al: Oxidative stress increases M1dG, a major peroxidation-derived DNA adduct, in mitochondrial DNA. Nucleic Acids Res. 46:3458–3467. 2018. View Article : Google Scholar : PubMed/NCBI | |
Feng Z, Hu W, Marnett LJ and Tang M: Malondialdehyde, a major endogenous lipid peroxidation product, sensitizes human cells to UV- and BPDE-induced killing and mutagenesis through inhibition of nucleotide excision repair. Mutat Res. 601:125–136. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ramana KV, Srivastava S and Singhal SS: Lipid peroxidation products in human health and disease 2016. Oxid Med Cell Longev. 2017:21632852017. View Article : Google Scholar : PubMed/NCBI | |
Dancik GM, Varisli L and Vlahopoulos SA: The molecular context of oxidant stress response in cancer establishes ALDH1A1 as a critical target: What this means for acute myeloid leukemia. Int J Mol Sci. 24:93722023. View Article : Google Scholar : PubMed/NCBI | |
Yue H, Hu Z, Hu R, Guo Z, Zheng Y, Wang Y and Zhou Y: ALDH1A1 in cancers: Bidirectional function, drug resistance, and regulatory mechanism. Front Oncol. 12:9187782022. View Article : Google Scholar : PubMed/NCBI | |
Tomita H, Tanaka K, Tanaka T and Hara A: Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 7:11018–11032. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stromskaya TP, Rybalkina EY, Zabotina TN, Shishkin AA and Stavrovskaya AA: Influence of RARalpha gene on MDR1 expression and P-glycoprotein function in human leukemic cells. Cancer Cell Int. 5:152005. View Article : Google Scholar : PubMed/NCBI | |
Poturnajova M, Kozovska Z and Matuskova M: Aldehyde dehydrogenase 1A1 and 1A3 isoforms-mechanism of activation and regulation in cancer. Cell Signal. 87:1101202021. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Li Y, Chen Y, Liu P, Huang S, Zhang Y, Sun Y, Wu Z, Hu M, Wu Q, et al: ALDH1: A potential therapeutic target for cancer stem cells in solid tumors. Front Oncol. 12:10262782022. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 5:82020. View Article : Google Scholar : PubMed/NCBI | |
Ciccone V, Morbidelli L, Ziche M and Donnini S: How to conjugate the stemness marker ALDH1A1 with tumor angiogenesis, progression, and drug resistance. Cancer Drug Resist. 3:26–37. 2020.PubMed/NCBI | |
Zhou L, Jiang Y, Yan T, Di G, Shen Z, Shao Z and Lu J: The prognostic role of cancer stem cells in breast cancer: A meta-analysis of published literatures. Breast Cancer Res Treat. 122:795–801. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim YS, Jung MJ, Ryu DW and Lee CH: Clinicopathologic characteristics of breast cancer stem cells identified on the basis of aldehyde dehydrogenase 1 expression. J Breast Cancer. 17:121–128. 2014. View Article : Google Scholar : PubMed/NCBI | |
Miyoshi Y, Shien T, Ogiya A, Ishida N, Yamazaki K, Horii R, Horimoto Y, Masuda N, Yasojima H, Inao T, et al: Differences in expression of the cancer stem cell marker aldehyde dehydrogenase 1 among estrogen receptor-positive/human epidermal growth factor receptor type 2-negative breast cancer cases with early, late, and no recurrence. Breast Cancer Res. 18:732016. View Article : Google Scholar : PubMed/NCBI | |
Li H, Ma F, Wang H, Lin C, Fan Y, Zhang X, Qian H and Xu B: Stem cell marker aldehyde dehydrogenase 1 (ALDH1)-expressing cells are enriched in triple-negative breast cancer. Int J Biol Markers. 28:e357–e364. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ma F, Li H, Li Y, Ding X, Wang H, Fan Y, Lin C, Qian H and Xu B: Aldehyde dehydrogenase 1 (ALDH1) expression is an independent prognostic factor in triple negative breast cancer (TNBC). Medicine (Baltimore). 96:e65612017. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Lv DL, Duan JJ, Xu SL, Zhang JF, Yang XJ, Zhang X, Cui YH, Bian XW and Yu SC: ALDH1A1 expression correlates with clinicopathologic features and poor prognosis of breast cancer patients: A systematic review and meta-analysis. BMC Cancer. 14:4442014. View Article : Google Scholar : PubMed/NCBI | |
Morimoto K, Kim SJ, Tanei T, Shimazu K, Tanji Y, Taguchi T, Tamaki Y, Terada N and Noguchi S: Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Sci. 100:1062–1068. 2009. View Article : Google Scholar : PubMed/NCBI | |
Althobiti M, El Ansari R, Aleskandarany M, Joseph C, Toss MS, Green AR and Rakha EA: The prognostic significance of ALDH1A1 expression in early invasive breast cancer. Histopathology. 77:437–448. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kang EJ, Jung H, Woo OH, Park KH, Woo SU, Yang DS, Kim AR, Lee JB, Kim YH, Kim JS and Seo JH: Association of aldehyde dehydrogenase 1 expression and biologically aggressive features in breast cancer. Neoplasma. 61:352–362. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yao J, Jin Q, Wang XD, Zhu HJ and Ni QC: Aldehyde dehydrogenase 1 expression is correlated with poor prognosis in breast cancer. Medicine (Baltimore). 96:e71712017. View Article : Google Scholar : PubMed/NCBI | |
Ohi Y, Umekita Y, Yoshioka T, Souda M, Rai Y, Sagara Y, Sagara Y, Sagara Y and Tanimoto A: Aldehyde dehydrogenase 1 expression predicts poor prognosis in triple-negative breast cancer. Histopathology. 59:776–780. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nogami T, Shien T, Tanaka T, Nishiyama K, Mizoo T, Iwamto T, Ikeda H, Taira N, Doihara H and Miyoshi S: Expression of ALDH1 in axillary lymph node metastases is a prognostic factor of poor clinical outcome in breast cancer patients with 1–3 lymph node metastases. Breast Cancer. 21:58–65. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Bi LR, Xu N, Yang HM, Zhang HT, Ding Y, Shi AP and Fan ZM: The expression of aldehyde dehydrogenase 1 in invasive primary breast tumors and axillary lymph node metastases is associated with poor clinical prognosis. Pathol Res Pract. 209:555–561. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kong Y, Lyu N, Wu J, Tang H and Xie X, Yang L, Li X, Wei W and Xie X: Breast cancer stem cell markers CD44 and ALDH1A1 in serum: Distribution and prognostic value in patients with primary breast cancer. J Cancer. 9:3728–3735. 2018. View Article : Google Scholar : PubMed/NCBI | |
Resetkova E, Reis-Filho JS, Jain RK, Mehta R, Thorat MA, Nakshatri H and Badve S: Prognostic impact of ALDH1 in breast cancer: A story of stem cells and tumor microenvironment. Breast Cancer Res Treat. 123:97–108. 2010. View Article : Google Scholar : PubMed/NCBI | |
Honeth G, Lombardi S, Ginestier C, Hur M, Marlow R, Buchupalli B, Shinomiya I, Gazinska P, Bombelli S, Ramalingam V, et al: Aldehyde dehydrogenase and estrogen receptor define a hierarchy of cellular differentiation in the normal human mammary epithelium. Breast Cancer Res. 16:R522014. View Article : Google Scholar : PubMed/NCBI | |
Sarmiento-Castro A, Caamaño-Gutiérrez E, Sims AH, Hull NJ, James MI, Santiago-Gómez A, Eyre R, Clark C, Brown ME, Brooks MD, et al: Increased expression of Interleukin-1 receptor characterizes Anti-estrogen-Resistant ALDH+ breast cancer stem cells. Stem Cell Reports. 15:307–316. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Jiang J, Ying G, Xie XQ, Zhang X, Xu W, Zhang X, Song E, Bu H, Ping YF, et al: Tamoxifen enhances stemness and promotes metastasis of ERα36+ breast cancer by upregulating ALDH1A1 in cancer cells. Cell Res. 28:336–358. 2018. View Article : Google Scholar : PubMed/NCBI | |
Varisli L, Dancik GM, Tolan V and Vlahopoulos S: Critical roles of SRC-3 in the development and progression of breast cancer, rendering it a prospective clinical target. Cancers (Basel). 15:52422023. View Article : Google Scholar : PubMed/NCBI | |
Brown K, Chen Y, Underhill TM, Mymryk JS and Torchia J: The coactivator p/CIP/SRC-3 facilitates retinoic acid receptor signaling via recruitment of GCN5. J Biol Chem. 278:39402–39412. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ferry C, Gaouar S, Fischer B, Boeglin M, Paul N, Samarut E, Piskunov A, Pankotai-Bodo G, Brino L and Rochette-Egly C: Cullin 3 mediates SRC-3 ubiquitination and degradation to control the retinoic acid response. Proc Natl Acad Sci USA. 108:20603–20608. 2011. View Article : Google Scholar : PubMed/NCBI | |
Giannì M, Parrella E, Raska I Jr, Gaillard E, Nigro EA, Gaudon C, Garattini E and Rochette-Egly C: P38MAPK-dependent phosphorylation and degradation of SRC-3/AIB1 and RARalpha-mediated transcription. EMBO J. 25:739–751. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rohira AD, Yan F, Wang L, Wang J, Zhou S, Lu A, Yu Y, Xu J, Lonard DM and O'Malley BW: Targeting SRC coactivators blocks the Tumor-initiating capacity of cancer stem-like cells. Cancer Res. 77:4293–4304. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fitzgerald P, Teng M, Chandraratna RA, Heyman RA and Allegretto EA: Retinoic acid receptor alpha expression correlates with retinoid-induced growth inhibition of human breast cancer cells regardless of estrogen receptor status. Cancer Res. 57:2642–2650. 1997.PubMed/NCBI | |
Garattini E, Bolis M, Garattini SK, Fratelli M, Centritto F, Paroni G, Gianni' M, Zanetti A, Pagani A, Fisher JN, et al: Retinoids and breast cancer: From basic studies to the clinic and back again. Cancer Treat Rev. 40:739–749. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Lee MO, Wang HG, Li Y, Hashimoto Y, Klaus M, Reed JC and Zhang X: Retinoic acid receptor beta mediates the growth-inhibitory effect of retinoic acid by promoting apoptosis in human breast cancer cells. Mol Cell Biol. 16:1138–1149. 1996. View Article : Google Scholar : PubMed/NCBI | |
Centritto F, Paroni G, Bolis M, Garattini SK, Kurosaki M, Barzago MM, Zanetti A, Fisher JN, Scott MF, Pattini L, et al: Cellular and molecular determinants of all-trans retinoic acid sensitivity in breast cancer: Luminal phenotype and RARα expression. EMBO Mol Med. 7:950–972. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roman SD, Ormandy CJ, Manning DL, Blamey RW, Nicholson RI, Sutherland RL and Clarke CL: Estradiol induction of retinoic acid receptors in human breast cancer cells. Cancer Res. 53:5940–5945. 1993.PubMed/NCBI | |
Hua S, Kittler R and White KP: Genomic antagonism between retinoic acid and estrogen signaling in breast cancer. Cell. 137:2009. View Article : Google Scholar | |
Ombra MN, Di Santi A, Abbondanza C, Migliaccio A, Avvedimento EV and Perillo B: Retinoic acid impairs estrogen signaling in breast cancer cells by interfering with activation of LSD1 via PKA. Biochim Biophys Acta. 1829:480–486. 2013. View Article : Google Scholar : PubMed/NCBI | |
Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, Houvenaeghel G, Extra JM, Bertucci F, Jacquemier J, et al: Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 16:45–55. 2010. View Article : Google Scholar : PubMed/NCBI | |
Croker AK, Rodriguez-Torres M, Xia Y, Pardhan S, Leong HS, Lewis JD and Allan AL: Differential functional roles of ALDH1A1 and ALDH1A3 in mediating metastatic behavior and therapy resistance of human breast cancer cells. Int J Mol Sci. 18:20392017. View Article : Google Scholar : PubMed/NCBI | |
Pan H, Wu N, Huang Y, Li Q, Liu C, Liang M, Zhou W, Liu X and Wang S: Aldehyde dehydrogenase 1 expression correlates with the invasion of breast cancer. Diagn Pathol. 10:662015. View Article : Google Scholar : PubMed/NCBI | |
Sakakibara M, Fujimori T, Miyoshi T, Nagashima T, Fujimoto H, Suzuki HT, Ohki Y, Fushimi K, Yokomizo J, Nakatani Y and Miyazaki M: Aldehyde dehydrogenase 1-positive cells in axillary lymph node metastases after chemotherapy as a prognostic factor in patients with lymph node-positive breast cancer. Cancer. 118:3899–3910. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liang L and Kaufmann AM: The significance of cancer stem cells and Epithelial-Mesenchymal transition in metastasis and Anti-cancer therapy. Int J Mol Sci. 24:25552023. View Article : Google Scholar : PubMed/NCBI | |
Papadaki MA, Stoupis G, Theodoropoulos PA, Mavroudis D, Georgoulias V and Agelaki S: Circulating tumor cells with stemness and Epithelial-to-Mesenchymal transition features are chemoresistant and predictive of poor outcome in metastatic breast cancer. Mol Cancer Ther. 18:437–447. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hashemi M, Arani HZ, Orouei S, Fallah S, Ghorbani A, Khaledabadi M, Kakavand A, Tavakolpournegari A, Saebfar H, Heidari H, et al: EMT mechanism in breast cancer metastasis and drug resistance: Revisiting molecular interactions and biological functions. Biomed Pharmacother. 155:1137742022. View Article : Google Scholar : PubMed/NCBI | |
Francou A and Anderson KV: The Epithelial-to-Mesenchymal transition (EMT) in development and cancer. Annu Rev Cancer Biol. 4:197–220. 2020. View Article : Google Scholar : PubMed/NCBI | |
Varisli L and Tolan V: Increased ROS alters E-/N-cadherin levels and promotes migration in prostate cancer cells. Bratisl Lek Listy. 123:752–757. 2022.PubMed/NCBI | |
Raimondi C, Gradilone A, Naso G, Vincenzi B, Petracca A, Nicolazzo C, Palazzo A, Saltarelli R, Spremberg F, Cortesi E and Gazzaniga P: Epithelial-mesenchymal transition and stemness features in circulating tumor cells from breast cancer patients. Breast Cancer Res Treat. 130:449–455. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kallergi G, Papadaki MA, Politaki E, Mavroudis D, Georgoulias V and Agelaki S: Epithelial to mesenchymal transition markers expressed in circulating tumour cells of early and metastatic breast cancer patients. Breast Cancer Res. 13:R592011. View Article : Google Scholar : PubMed/NCBI | |
Papadaki MA, Kallergi G, Zafeiriou Z, Manouras L, Theodoropoulos PA, Mavroudis D, Georgoulias V and Agelaki S: Co-expression of putative stemness and epithelial-to-mesenchymal transition markers on single circulating tumour cells from patients with early and metastatic breast cancer. BMC Cancer. 14:6512014. View Article : Google Scholar : PubMed/NCBI | |
Vesuna F, Lisok A, Kimble B and Raman V: Twist modulates breast cancer stem cells by transcriptional regulation of CD24 expression. Neoplasia. 11:1318–1328. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ito M, Shien T, Omori M, Mizoo T, Iwamoto T, Nogami T, Motoki T, Taira N, Doihara H and Miyoshi S: Evaluation of aldehyde dehydrogenase 1 and transcription factors in both primary breast cancer and axillary lymph node metastases as a prognostic factor. Breast Cancer. 23:437–444. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ciccone V, Terzuoli E, Donnini S, Giachetti A, Morbidelli L and Ziche M: Stemness marker ALDH1A1 promotes tumor angiogenesis via retinoic acid/HIF-1α/VEGF signalling in MCF-7 breast cancer cells. J Exp Clin Cancer Res. 37:3112018. View Article : Google Scholar : PubMed/NCBI | |
DA Cruz Paula A, Marques O, Sampaio R, Rosa A, Garcia J, Rêma A, DE Fátima Faria M, Silva P, Vizcaíno R and Lopes C: Characterization of CD44+ALDH1+Ki-67-Cells in Non-malignant and neoplastic lesions of the breast. Anticancer Res. 36:4629–4638. 2016. View Article : Google Scholar : PubMed/NCBI | |
Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S, Sobotta MC, Moehrle B, Brocks D, Bayindir I, Kaschutnig P, et al: Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature. 520:549–552. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lynch J, Troadec E, Fung TK, Gladysz K, Virely C, Lau PNI, Cheung N, Zeisig B, Wong JWH, Lopes M, et al: Hematopoietic stem cell quiescence and DNA replication dynamics maintained by the resilient β-catenin/Hoxa9/Prmt1 axis. Blood. 143:1586–1598. 2024. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Fei P, Simon DW, Morowitz MJ, Mehta PA and Du W: Crosstalk between DNA damage repair and metabolic regulation in hematopoietic stem cells. Cells. 13:7332024. View Article : Google Scholar : PubMed/NCBI | |
Becker F, Ouzin M, Liedtke S, Raba K and Kogler G: DNA damage response after treatment of cycling and quiescent cord blood hematopoietic stem cells with distinct genotoxic noxae. Stem Cells. 42:158–171. 2024. View Article : Google Scholar : PubMed/NCBI | |
Pallis M, Burrows F, Whittall A, Boddy N, Seedhouse C and Russell N: Efficacy of RNA polymerase II inhibitors in targeting dormant leukaemia cells. BMC Pharmacol Toxicol. 14:322013. View Article : Google Scholar : PubMed/NCBI | |
Min HY and Lee HY: Cellular dormancy in cancer: Mechanisms and potential targeting strategies. Cancer Res Treat. 55:720–736. 2023. View Article : Google Scholar : PubMed/NCBI | |
Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, Banerjee A, Luo Y, Rogers D, Brooks AN, et al: Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 38:675–678. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vlahopoulos S, Pan L, Varisli L, Dancik GM, Karantanos T and Boldogh I: OGG1 as an epigenetic reader affects NFκB: What this means for cancer. Cancers (Basel). 16:1482023. View Article : Google Scholar : PubMed/NCBI | |
Bidan N, Bailleul-Dubois J, Duval J, Winter M, Denoulet M, Hannebicque K, El-Sayed IY, Ginestier C, Forissier V, Charafe-Jauffret E, et al: Transcriptomic analysis of breast cancer stem cells and development of a pALDH1A1:mNeptune reporter system for live tracking. Proteomics. 19:e18004542019. View Article : Google Scholar : PubMed/NCBI | |
Enikeev AD, Abramov PM, Elkin DS, Komelkov AV, Beliaeva AA, Silantieva DM and Tchevkina EM: Opposite effects of CRABP1 and CRABP2 homologs on proliferation of breast cancer cells and their sensitivity to retinoic acid. Biochemistry (Mosc). 88:2107–2124. 2023. View Article : Google Scholar : PubMed/NCBI | |
Brown G: Deregulation of All-trans retinoic acid signaling and development in cancer. Int J Mol Sci. 24:120892023. View Article : Google Scholar : PubMed/NCBI | |
Patel M, Lu L, Zander DS, Sreerama L, Coco D and Moreb JS: ALDH1A1 and ALDH3A1 expression in lung cancers: Correlation with histologic type and potential precursors. Lung Cancer. 59:340–349. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Xiang Y, Xiang L, Xiao Y, Li F and Hao P: ALDH maintains the stemness of lung adenoma stem cells by suppressing the Notch/CDK2/CCNE pathway. PLoS One. 9:e926692014. View Article : Google Scholar : PubMed/NCBI | |
Yassin Fel-Z: Aldehyde dehyderogenase (ALDH1A1) delineating the normal and cancer stem cells in spectral lung lesions: An immunohistochemical appraisal. Pathol Res Pract. 212:398–409. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wei Y, Wu S, Xu W, Liang Y, Li Y, Zhao W and Wu J: Depleted aldehyde dehydrogenase 1A1 (ALDH1A1) reverses cisplatin resistance of human lung adenocarcinoma cell A549/DDP. Thorac Cancer. 8:26–32. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Wang L, Cui W, Yuan X, Lin L, Cao Q, Wang N, Li Y, Guo W, Zhang X, et al: Targeting ALDH1A1 by disulfiram/copper complex inhibits non-small cell lung cancer recurrence driven by ALDH-positive cancer stem cells. Oncotarget. 7:58516–58530. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao F, Zhou B, Xu JC, Gao X, Li SX, Zhu GC, Zhang XG and Yang C: The role of LGR5 and ALDH1A1 in non-small cell lung cancer: Cancer progression and prognosis. Biochem Biophys Res Commun. 462:91–98. 2015. View Article : Google Scholar : PubMed/NCBI | |
Alamgeer M, Ganju V, Szczepny A, Russell PA, Prodanovic Z, Kumar B, Wainer Z, Brown T, Schneider-Kolsky M, Conron M, et al: The prognostic significance of aldehyde dehydrogenase 1A1 (ALDH1A1) and CD133 expression in early stage non-small cell lung cancer. Thorax. 68:1095–1104. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li D, Cao Y, Luo CW, Zhang LP and Zou YB: The clinical significance and prognostic value of ALDH1 expression in non-small cell lung cancer: A systematic review and meta-analysis. Recent Pat Anticancer Drug Discov. 19:599–609. 2024. View Article : Google Scholar : PubMed/NCBI | |
Biswas AK, Han S, Tai Y, Ma W, Coker C, Quinn SA, Shakri AR, Zhong TJ, Scholze H, Lagos GG, et al: Targeting S100A9-ALDH1A1-Retinoic acid signaling to suppress brain relapse in EGFR-mutant lung cancer. Cancer Discov. 12:1002–1021. 2022. View Article : Google Scholar : PubMed/NCBI | |
Okudela K, Woo T, Mitsui H, Suzuki T, Tajiri M, Sakuma Y, Miyagi Y, Tateishi Y, Umeda S, Masuda M and Ohashi K: Downregulation of ALDH1A1 expression in non-small cell lung carcinomas-its clinicopathologic and biological significance. Int J Clin Exp Pathol. 6:1–12. 2013.PubMed/NCBI | |
Yamashita N, So T, Miyata T, Yoshimatsu T, Nakano R, Oyama T, Matsunaga W and Gotoh A: Triple-negative expression (ALDH1A1-/CD133-/mutant p53-) cases in lung adenocarcinoma had a good prognosis. Sci Rep. 12:14732022. View Article : Google Scholar : PubMed/NCBI | |
Pelos G, Riester M, Pal J, Myacheva K, Moneke I, Rotondo JC, Lübbert M and Diederichs S: Fast proliferating and slowly migrating non-small cell lung cancer cells are vulnerable to decitabine and retinoic acid combinatorial treatment. Int J Cancer. 154:1029–1042. 2024. View Article : Google Scholar : PubMed/NCBI | |
Zito G, Naselli F, Saieva L, Raimondo S, Calabrese G, Guzzardo C, Forte S, Rolfo C, Parenti R and Alessandro R: Retinoic Acid affects Lung adenocarcinoma growth by inducing differentiation via GATA6 activation and EGFR and Wnt inhibition. Sci Rep. 7:47702017. View Article : Google Scholar : PubMed/NCBI | |
Li D, Sun J, Liu W, Wang X, Bals R, Wu J, Quan W, Yao Y, Zhang Y, Zhou H and Wu K: Rig-G is a growth inhibitory factor of lung cancer cells that suppresses STAT3 and NF-κB. Oncotarget. 7:66032–66050. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rehó B, Fadel L, Brazda P, Benziane A, Hegedüs É, Sen P, Gadella TWJ, Tóth K, Nagy L and Vámosi G: Agonist-controlled competition of RAR and VDR nuclear receptors for heterodimerization with RXR is manifested in their DNA binding. J Biol Chem. 299:1028962023. View Article : Google Scholar : PubMed/NCBI | |
López-Fandiño R, Molina E and Lozano-Ojalvo D: Intestinal factors promoting the development of RORγt+ cells and oral tolerance. Front Immunol. 14:12942922023. View Article : Google Scholar : PubMed/NCBI | |
Le Magnen C, Bubendorf L, Rentsch CA, Mengus C, Gsponer J, Zellweger T, Rieken M, Thalmann GN, Cecchini MG, Germann M, et al: Characterization and clinical relevance of ALDHbright populations in prostate cancer. Clin Cancer Res. 19:5361–5371. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gorodetska I, Offermann A, Püschel J, Lukiyanchuk V, Gaete D, Kurzyukova A, Freytag V, Haider MT, Fjeldbo CS, Di Gaetano S, et al: ALDH1A1 drives prostate cancer metastases and radioresistance by interplay with AR- and RAR-dependent transcription. Theranostics. 14:714–737. 2024. View Article : Google Scholar : PubMed/NCBI | |
Nastały P, Filipska M, Morrissey C, Eltze E, Semjonow A, Brandt B, Pantel K and Bednarz-Knoll N: ALDH1-positive intratumoral stromal cells indicate differentiated epithelial-like phenotype and good prognosis in prostate cancer. Transl Res. 203:49–56. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Ren G, Shangguan C, Guo L, Dong Z, Li Y, Zhang W, Zhao L, Hou P, Zhang Y, et al: ATRA inhibits the proliferation of DU145 prostate cancer cells through reducing the methylation level of HOXB13 gene. PLoS One. 7:e409432012. View Article : Google Scholar : PubMed/NCBI | |
Landen CN Jr, Goodman B, Katre AA, Steg AD, Nick AM, Stone RL, Miller LD, Mejia PV, Jennings NB, Gershenson DM, et al: Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Mol Cancer Ther. 9:3186–3199. 2010. View Article : Google Scholar : PubMed/NCBI | |
Izycka N, Rucinski M, Andrzejewska M, Szubert S, Nowak-Markwitz E and Sterzynska K: The prognostic value of cancer stem cell markers (CSCs) Expression-ALDH1A1, CD133, CD44-For survival and long-term follow-up of ovarian cancer patients. Int J Mol Sci. 24:24002023. View Article : Google Scholar : PubMed/NCBI | |
Meng E, Mitra A, Tripathi K, Finan MA, Scalici J, McClellan S, Madeira da Silva L, Reed E, Shevde LA, Palle K and Rocconi RP: ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling. PLoS One. 9:e1071422014. View Article : Google Scholar : PubMed/NCBI | |
Kaipio K, Chen P, Roering P, Huhtinen K, Mikkonen P, Östling P, Lehtinen L, Mansuri N, Korpela T, Potdar S, et al: ALDH1A1-related stemness in high-grade serous ovarian cancer is a negative prognostic indicator but potentially targetable by EGFR/mTOR-PI3K/aurora kinase inhibitors. J Pathol. 250:159–169. 2020. View Article : Google Scholar : PubMed/NCBI | |
Januchowski R, Wojtowicz K, Sterzyſska K, Sosiſska P, Andrzejewska M, Zawierucha P, Nowicki M and Zabel M: Inhibition of ALDH1A1 activity decreases expression of drug transporters and reduces chemotherapy resistance in ovarian cancer cell lines. Int J Biochem Cell Biol. 78:248–259. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nowacka M, Ginter-Matuszewska B, Świerczewska M, Sterzyńska K, Nowicki M and Januchowski R: Effect of ALDH1A1 gene knockout on drug resistance in paclitaxel and topotecan resistant human ovarian cancer cell lines in 2D and 3D model. Int J Mol Sci. 23:30362022. View Article : Google Scholar : PubMed/NCBI | |
Muralikrishnan V, Fang F, Given TC, Podicheti R, Chtcherbinine M, Metcalfe TX, Sriramkumar S, O'Hagan HM, Hurley TD and Nephew KP: A novel ALDH1A1 inhibitor blocks platinum-induced senescence and stemness in ovarian cancer. Cancers (Basel). 14:34372022. View Article : Google Scholar : PubMed/NCBI | |
Sharbatoghli M, Shamshiripour P, Fattahi F, Kalantari E, Habibi Shams Z, Panahi M, Totonchi M, Asadi-Lari Z, Madjd Z and Saeednejad Zanjani L: Co-expression of cancer stem cell markers, SALL4/ALDH1A1, is associated with tumor aggressiveness and poor survival in patients with serous ovarian carcinoma. J Ovarian Res. 15:172022. View Article : Google Scholar : PubMed/NCBI | |
Dancik GM, Voutsas IF and Vlahopoulos S: Lower RNA expression of ALDH1A1 distinguishes the favorable risk group in acute myeloid leukemia. Mol Biol Rep. 49:3321–3331. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gasparetto M, Pei S, Minhajuddin M, Khan N, Pollyea DA, Myers JR, Ashton JM, Becker MW, Vasiliou V, Humphries KR, et al: Targeted therapy for a subset of acute myeloid leukemias that lack expression of aldehyde dehydrogenase 1A1. Haematologica. 102:1054–1065. 2017. View Article : Google Scholar : PubMed/NCBI | |
Venton G, Pérez-Alea M, Baier C, Fournet G, Quash G, Labiad Y, Martin G, Sanderson F, Poullin P, Suchon P, et al: Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors. Blood Cancer J. 6:e4692016. View Article : Google Scholar : PubMed/NCBI | |
Rebollido-Rios R, Venton G, Sánchez-Redondo S, Iglesias I, Felip C, Fournet G, González E, Romero Fernández W, Borroto Escuela DO, Di Stefano B, Penarroche-Díaz R, et al: Dual disruption of aldehyde dehydrogenases 1 and 3 promotes functional changes in the glutathione redox system and enhances chemosensitivity in nonsmall cell lung cancer. Oncogene. 39:2756–2771. 2020. View Article : Google Scholar : PubMed/NCBI | |
Law R: Advanced BioDesign releases positive data from ODYSSEY AML study. Clinical Trials Arena. June 6–2024. | |
Venton G, Colle J, Tichadou A, Quessada J, Baier C, Labiad Y, Perez M, De Lassus L, Loosveld M, Arnoux I, et al: Reactive oxygen species and aldehyde dehydrogenase 1A as prognosis and theragnostic biomarker in acute myeloid leukaemia patients. J Cell Mol Med. 28:e700112024. View Article : Google Scholar : PubMed/NCBI | |
Yasgar A, Titus SA, Wang Y, Danchik C, Yang SM, Vasiliou V, Jadhav A, Maloney DJ, Simeonov A and Martinez NJ: A High-content assay enables the automated screening and identification of small molecules with specific ALDH1A1-inhibitory activity. PLoS One. 12:e01709372017. View Article : Google Scholar : PubMed/NCBI | |
Xu B, Wang S, Li R, Chen K, He L, Deng M, Kannappan V, Zha J, Dong H and Wang W: Disulfiram/copper selectively eradicates AML leukemia stem cells in vitro and in vivo by simultaneous induction of ROS-JNK and inhibition of NF-κB and Nrf2. Cell Death Dis. 8:e27972017. View Article : Google Scholar : PubMed/NCBI | |
Dancik GM, Voutsas IF and Vlahopoulos S: Aldehyde dehydrogenase enzyme functions in acute leukemia stem cells. Front Biosci (Schol Ed). 14:82022. View Article : Google Scholar : PubMed/NCBI | |
Ghiaur G, Yegnasubramanian S, Perkins B, Gucwa JL, Gerber JM and Jones RJ: Regulation of human hematopoietic stem cell self-renewal by the microenvironment's control of retinoic acid signaling. Proc Natl Acad Sci USA. 110:16121–16126. 2013. View Article : Google Scholar : PubMed/NCBI | |
Alonso S, Jones RJ and Ghiaur G: Retinoic acid, CYP26, and drug resistance in the stem cell niche. Exp Hematol. 54:17–25. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bunaciu RP, MacDonald RJ, Gao F, Johnson LM, Varner JD, Wang X, Nataraj S, Guzman ML and Yen A: Potential for subsets of wt-NPM1 primary AML blasts to respond to retinoic acid treatment. Oncotarget. 9:4134–4149. 2018. View Article : Google Scholar : PubMed/NCBI | |
McGinn O, Riley D, Finlay-Schultz J, Paul KV, Kabos P and Sartorius CA: Cytokeratins 5 and 17 maintain an aggressive epithelial state in basal-like breast cancer. Mol Cancer Res. 20:1443–1455. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Zhou W, Xia J, Gu Z, Wendlandt E, Zhan X, Janz S, Tricot G and Zhan F: NEK2 mediates ALDH1A1-dependent drug resistance in multiple myeloma. Oncotarget. 5:11986–11997. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xia J, He Y, Meng B, Chen S, Zhang J, Wu X, Zhu Y, Shen Y, Feng X, Guan Y, et al: NEK2 induces autophagy-mediated bortezomib resistance by stabilizing Beclin-1 in multiple myeloma. Mol Oncol. 14:763–778. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xing Z, Zhang M and Wang X, Liu J, Liu G, Feng K and Wang X: Silencing of Nek2 suppresses the proliferation, migration and invasion and induces apoptosis of breast cancer cells by regulating ERK/MAPK signaling. J Mol Histol. 52:809–821. 2021. View Article : Google Scholar : PubMed/NCBI | |
Szafarowski T, Sierdziński J, Ludwig N, Głuszko A, Filipowska A and Szczepański MJ: Assessment of cancer stem cell marker expression in primary head and neck squamous cell carcinoma shows prognostic value for aldehyde dehydrogenase (ALDH1A1). Eur J Pharmacol. 867:1728372020. View Article : Google Scholar : PubMed/NCBI | |
Gupta V, Maurya MK, Agarwal P, Kumar M, Sagar M, Raghuvanshi S and Gupta S: Expression of aldehyde dehydrogenase 1A1 in oral squamous cell carcinoma and its correlation with clinicopathological parameters. Natl J Maxillofac Surg. 13:208–215. 2022. View Article : Google Scholar : PubMed/NCBI | |
Namekawa T, Ikeda K, Horie-Inoue K, Suzuki T, Okamoto K, Ichikawa T, Yano A, Kawakami S and Inoue S: ALDH1A1 in patient-derived bladder cancer spheroids activates retinoic acid signaling leading to TUBB3 overexpression and tumor progression. Int J Cancer. 146:1099–1113. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Xu Q, Fu X and Luo W: ALDH1A1 overexpression is associated with the progression and prognosis in gastric cancer. BMC Cancer. 14:7052014. View Article : Google Scholar : PubMed/NCBI | |
van der Waals LM, Borel Rinkes IHM and Kranenburg O: ALDH1A1 expression is associated with poor differentiation, ‘right-sidedness’ and poor survival in human colorectal cancer. PLoS One. 13:e02055362018. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Ren Y, Yu X, Qian F, Bian BS, Xiao HL, Wang WG, Xu SL, Yang J, Cui W, et al: ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma. Mod Pathol. 27:775–783. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yehya A, Youssef J, Hachem S, Ismael J and Abou-Kheir W: Tissue-specific cancer stem/progenitor cells: Therapeutic implications. World J Stem Cells. 15:323–341. 2023. View Article : Google Scholar : PubMed/NCBI | |
Sládek NE, Kollander R, Sreerama L and Kiang DT: Cellular levels of aldehyde dehydrogenases (ALDH1A1 and ALDH3A1) as predictors of therapeutic responses to cyclophosphamide-based chemotherapy of breast cancer: A retrospective study. Rational individualization of oxazaphosphorine-based cancer chemotherapeutic regimens. Cancer Chemother Pharmacol. 49:309–321. 2002. View Article : Google Scholar : PubMed/NCBI | |
Khoury T, Ademuyiwa FO, Chandrasekhar R, Jabbour M, Deleo A, Ferrone S, Wang Y and Wang X: Aldehyde dehydrogenase 1A1 expression in breast cancer is associated with stage, triple negativity, and outcome to neoadjuvant chemotherapy. Mod Pathol. 25:388–397. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sun M, Zhao H, Xiao Q, Yu Z, Song Z, Yao W, Tang H, Guan S, Jin F and Wei M: Combined expression of aldehyde dehydrogenase 1A1 and β-catenin is associated with lymph node metastasis and poor survival in breast cancer patients following cyclophosphamide treatment. Oncol Rep. 34:3163–3173. 2015. View Article : Google Scholar : PubMed/NCBI | |
Narendra G, Raju B, Verma H, Kumar M, Jain SK, Tung GK, Thakur S, Kaur R, Kaur S, Sapra B and Silakari O: Scaffold hopping based designing of selective ALDH1A1 inhibitors to overcome cyclophosphamide resistance: Synthesis and biological evaluation. RSC Med Chem. 15:309–321. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wang D and Wang H: Oxazaphosphorine bioactivation and detoxification The role of xenobiotic receptors. Acta Pharm Sin B. 2:10.1016/j.apsb.2012.02.004. 2012. View Article : Google Scholar | |
Paul SK, Guendouzi A, Banerjee A, Guendouzi A and Haldar R: Identification of approved drugs with ALDH1A1 inhibitory potential aimed at enhancing chemotherapy sensitivity in cancer cells: An in-silico drug repurposing approach. J Biomol Struct Dyn. 1–15. 2024.doi: 10.1080/07391102.2023.2300127 (Epub ahead of print). View Article : Google Scholar | |
Lu C, Li X, Ren Y and Zhang X: Disulfiram: A novel repurposed drug for cancer therapy. Cancer Chemother Pharmacol. 87:159–172. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yip NC, Fombon IS, Liu P, Brown S, Kannappan V, Armesilla AL, Xu B, Cassidy J, Darling JL and Wang W: Disulfiram modulated ROS-MAPK and NFκB pathways and targeted breast cancer cells with cancer stem cell-like properties. Br J Cancer. 104:1564–1574. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim JY, Cho Y, Oh E, Lee N, An H, Sung D, Cho TM and Seo JH: Disulfiram targets cancer stem-like properties and the HER2/Akt signaling pathway in HER2-positive breast cancer. Cancer Lett. 379:39–48. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim YJ, Kim JY, Lee N, Oh E, Sung D, Cho TM and Seo JH: Disulfiram suppresses cancer stem-like properties and STAT3 signaling in triple-negative breast cancer cells. Biochem Biophys Res Commun. 486:1069–1076. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Hutzen B, Lee HF, Peng Z, Wang W, Zhao C, Lin HJ, Sun D, Li PK, Li C, et al: Evaluation of STAT3 signaling in ALDH+ and ALDH+/CD44+/CD24-subpopulations of breast cancer cells. PLoS One. 8:e828212013. View Article : Google Scholar : PubMed/NCBI | |
Nourbakhsh M, Farzaneh S, Taghikhani A, Zarghi A and Noori S: The effect of a newly synthesized ferrocene derivative against MCF-7 breast cancer cells and spheroid stem cells through ROS production and inhibition of JAK2/STAT3 signaling pathway. Anticancer Agents Med Chem. 20:875–886. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tsao AN, Chuang YS, Lin YC, Su Y and Chao TC: Dinaciclib inhibits the stemness of two subtypes of human breast cancer cells by targeting the FoxM1 and Hedgehog signaling pathway. Oncol Rep. 47:1052022. View Article : Google Scholar : PubMed/NCBI | |
Teng CJ, Cheng PT, Cheng YC, Tsai JR, Chen MC and Lin H: Dinaciclib inhibits the growth of acute myeloid leukemia cells through either cell cycle-related or ERK1/STAT3/MYC pathways. Toxicol In Vitro. 96:1057682024. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Dong L, Sun Z, Wang L, Wang Q, Li H, Zhang J and Wang X: Esculentoside A suppresses breast cancer stem cell growth through stemness attenuation and apoptosis induction by blocking IL-6/STAT3 signaling pathway. Phytother Res. 32:2299–2311. 2018. View Article : Google Scholar : PubMed/NCBI | |
Simões BM, O'Brien CS, Eyre R, Silva A, Yu L, Sarmiento-Castro A, Alférez DG, Spence K, Santiago-Gómez A, Chemi F, et al: Anti-estrogen resistance in human breast tumors is driven by JAG1-NOTCH4-dependent cancer stem cell activity. Cell Rep. 12:1968–1977. 2015. View Article : Google Scholar : PubMed/NCBI | |
Notas G, Pelekanou V, Kampa M, Alexakis K, Sfakianakis S, Laliotis A, Askoxilakis J, Tsentelierou E, Tzardi M, Tsapis A and Castanas E: Tamoxifen induces a pluripotency signature in breast cancer cells and human tumors. Mol Oncol. 9:1744–1759. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhang B, Yang YF, Jin J and Liu YH: Aldehyde dehydrogenase 1 as a predictor of the neoadjuvant chemotherapy response in breast cancer: A meta-analysis. Medicine (Baltimore). 97:e120562018. View Article : Google Scholar : PubMed/NCBI | |
Alamgeer M, Ganju V, Kumar B, Fox J, Hart S, White M, Harris M, Stuckey J, Prodanovic Z, Schneider-Kolsky ME and Watkins DN: Changes in aldehyde dehydrogenase-1 expression during neoadjuvant chemotherapy predict outcome in locally advanced breast cancer. Breast Cancer Res. 16:R442014. View Article : Google Scholar : PubMed/NCBI | |
Lee A, Won KY, Lim SJ, Cho SY, Han SA, Park S and Song JY: ALDH1 and tumor infiltrating lymphocytes as predictors for neoadjuvant chemotherapy response in breast cancer. Pathol Res Pract. 214:619–624. 2018. View Article : Google Scholar : PubMed/NCBI | |
Allison SE, Chen Y, Petrovic N, Zhang J, Bourget K, Mackenzie PI and Murray M: Activation of ALDH1A1 in MDA-MB-468 breast cancer cells that over-express CYP2J2 protects against paclitaxel-dependent cell death mediated by reactive oxygen species. Biochem Pharmacol. 143:79–89. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kakarala M, Brenner DE, Korkaya H, Cheng C, Tazi K, Ginestier C, Liu S, Dontu G and Wicha MS: Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat. 122:777–785. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kesharwani RK, Srivastava V, Singh P, Rizvi SI, Adeppa K and Misra K: A novel approach for overcoming drug resistance in breast cancer chemotherapy by targeting new synthetic curcumin analogues against aldehyde dehydrogenase 1 (ALDH1A1) and glycogen synthase kinase-3 β (GSK-3β). Appl Biochem Biotechnol. 176:1996–2017. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wang X, Xie C, Zhu J, Meng Y, Chen Y, Li Y, Jiang Y, Yang X, Wang S, et al: Sonic hedgehog and Wnt/β-catenin pathways mediate curcumin inhibition of breast cancer stem cells. Anticancer Drugs. 29:208–215. 2018. View Article : Google Scholar : PubMed/NCBI | |
Attia YM, El-Kersh DM, Ammar RA, Adel A, Khalil A, Walid H, Eskander K, Hamdy M, Reda N, Mohsen NE, et al: Inhibition of aldehyde dehydrogenase-1 and p-glycoprotein-mediated multidrug resistance by curcumin and vitamin D3 increases sensitivity to paclitaxel in breast cancer. Chem Biol Interact. 315:1088652020. View Article : Google Scholar : PubMed/NCBI | |
Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, Tamaki Y and Noguchi S: Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res. 15:4234–4241. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Yang L, Li S, Ye D, Yang L, Liu Q, Zhao Z, Cai Q, Tan J and Li X: Quercetin inhibits breast cancer stem cells via downregulation of aldehyde dehydrogenase 1A1 (ALDH1A1), chemokine receptor type 4 (CXCR4), Mucin 1 (MUC1), and epithelial cell adhesion molecule (EpCAM). Med Sci Monit. 24:412–420. 2018. View Article : Google Scholar : PubMed/NCBI | |
Castro NP, Rangel MC, Merchant AS, MacKinnon G, Cuttitta F, Salomon DS and Kim YS: Sulforaphane suppresses the growth of triple-negative breast cancer stem-like cells in vitro and in vivo. Cancer Prev Res (Phila). 12:147–158. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhang T, Korkaya H, Liu S, Lee HF, Newman B, Yu Y, Clouthier SG, Schwartz SJ, Wicha MS and Sun D: Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin Cancer Res. 16:2580–2590. 2010. View Article : Google Scholar : PubMed/NCBI | |
Leung HW, Ko CH, Yue GL, Herr I and Lau CS: The natural agent 4-vinylphenol targets metastasis and stemness features in breast cancer stem-like cells. Cancer Chemother Pharmacol. 82:185–197. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang W, He S, Zhang R, Peng J, Guo D, Zhang J, Xiang B and Li L: ALDH1A1 maintains the cancer stem-like cells properties of esophageal squamous cell carcinoma by activating the AKT signal pathway and interacting with β-catenin. Biomed Pharmacother. 125:1099402020. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Song H, Jiang L, Qiao Y, Yang D, Wang D and Li J: Silybin prevents prostate cancer by inhibited the ALDH1A1 expression in the retinol metabolism pathway. Front Cell Dev Biol. 8:5743942020. View Article : Google Scholar : PubMed/NCBI | |
Scambia G, De Vincenzo R, Ranelletti FO, Panici PB, Ferrandina G, D'Agostino G, Fattorossi A, Bombardelli E and Mancuso S: Antiproliferative effect of silybin on gynaecological malignancies: Synergism with cisplatin and doxorubicin. Eur J Cancer. 32A:877–882. 1996. View Article : Google Scholar : PubMed/NCBI | |
Bhatia N, Zhao J, Wolf DM and Agarwal R: Inhibition of human carcinoma cell growth and DNA synthesis by silibinin, an active constituent of milk thistle: Comparison with silymarin. Cancer Lett. 147:77–84. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bian Y, Shan G, Bi G, Liang J, Hu Z, Sui Q, Shi H, Zheng Z, Yao G, Wang Q, et al: Targeting ALDH1A1 to enhance the efficacy of KRAS-targeted therapy through ferroptosis. Redox Biol. 77:1033612024. View Article : Google Scholar : PubMed/NCBI | |
Galiè M: RAS as supporting actor in breast cancer. Front Oncol. 9:11992019. View Article : Google Scholar : PubMed/NCBI | |
Tao S, Wang S, Moghaddam SJ, Ooi A, Chapman E, Wong PK and Zhang DD: Oncogenic KRAS confers chemoresistance by upregulating NRF2. Cancer Res. 74:7430–7441. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kim D, Choi BH, Ryoo IG and Kwak MK: High NRF2 level mediates cancer stem cell-like properties of aldehyde dehydrogenase (ALDH)-high ovarian cancer cells: Inhibitory role of all-trans retinoic acid in ALDH/NRF2 signaling. Cell Death Dis. 9:8962018. View Article : Google Scholar : PubMed/NCBI | |
Piao S, Ojha R, Rebecca VW, Samanta A, Ma XH, Mcafee Q, Nicastri MC, Buckley M, Brown E, Winkler JD, et al: ALDH1A1 and HLTF modulate the activity of lysosomal autophagy inhibitors in cancer cells. Autophagy. 13:2056–2071. 2017. View Article : Google Scholar : PubMed/NCBI | |
Varisli L, Cen O and Vlahopoulos S: Dissecting pharmacological effects of chloroquine in cancer treatment: Interference with inflammatory signaling pathways. Immunology. 159:257–278. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vlahopoulos S, Critselis E, Voutsas IF, Perez SA, Moschovi M, Baxevanis CN and Chrousos GP: New use for old drugs? Prospective targets of chloroquines in cancer therapy. Curr Drug Targets. 15:843–851. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liang DH, Choi DS, Ensor JE, Kaipparettu BA, Bass BL and Chang JC: The autophagy inhibitor chloroquine targets cancer stem cells in triple negative breast cancer by inducing mitochondrial damage and impairing DNA break repair. Cancer Lett. 376:249–258. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stagni V, Kaminari A, Sideratou Z, Sakellis E, Vlahopoulos SA and Tsiourvas D: Targeting breast cancer stem-like cells using chloroquine encapsulated by a triphenylphosphonium-functionalized hyperbranched polymer. Int J Pharm. 585:1194652020. View Article : Google Scholar : PubMed/NCBI | |
Panagiotaki KN, Sideratou Z, Vlahopoulos SA, Paravatou-Petsotas M, Zachariadis M, Khoury N, Zoumpourlis V and Tsiourvas D: A Triphenylphosphonium-functionalized mitochondriotropic nanocarrier for efficient co-delivery of doxorubicin and chloroquine and enhanced antineoplastic activity. Pharmaceuticals (Basel). 10:912017. View Article : Google Scholar : PubMed/NCBI | |
Visus C, Wang Y, Lozano-Leon A, Ferris RL, Silver S, Szczepanski MJ, Brand RE, Ferrone CR, Whiteside TL, Ferrone S, et al: Targeting ALDH(bright) human carcinoma-initiating cells with ALDH1A1-specific CD8+ T cells. Clin Cancer Res. 17:6174–6184. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Qiang J, Deng Q, Xia J, Deng L, Zhou L, Wang D, He X, Liu Y, Zhao B, et al: ALDH1A1 activity in tumor-initiating cells remodels myeloid-derived suppressor cells to promote breast cancer progression. Cancer Res. 81:5919–5934. 2021. View Article : Google Scholar : PubMed/NCBI |