
Novel clinical potential of poly (ADP‑ribose) polymerase inhibitors in triple‑negative breast cancer: Mechanistic insights and clinical applications (Review)
- This article is part of the special Issue: Molecular target and action mechanism of anti-cancer agents
- Authors:
- Yu Han
- Lei Wei
-
Affiliations: School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei 430000, P.R. China - Published online on: March 4, 2025 https://doi.org/10.3892/ol.2025.14961
- Article Number: 215
-
Copyright: © Han et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Giaquinto AN, Sung H, Newman LA, Freedman RA, Smith RA, Star J, Jemal A and Siegel RL: Breast cancer statistics 2024. CA Cancer J Clin. 74:477–495. 2024. View Article : Google Scholar : PubMed/NCBI | |
Wu SY, Wang H, Shao ZM and Jiang YZ: Triple-negative breast cancer: New treatment strategies in the era of precision medicine. Sci China Life Sci. 64:372–388. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yuan P, Ma N and Xu B: Poly (adenosine diphosphate-ribose) polymerase inhibitors in the treatment of triple-negative breast cancer with homologous repair deficiency. Med Res Rev. 44:2774–2792. 2024. View Article : Google Scholar : PubMed/NCBI | |
Konstantinopoulos PA, Ceccaldi R, Shapiro GI and D'Andrea AD: Homologous recombination deficiency: Exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov. 5:1137–1154. 2015. View Article : Google Scholar : PubMed/NCBI | |
de Bono J, Mateo J, Fizazi K, Saad F, Shore N, Sandhu S, Chi KN, Sartor O, Agarwal N, Olmos D, et al: Olaparib for metastatic castration-resistant prostate cancer. N Engl J Med. 382:2091–2102. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mateo J, Porta N, Bianchini D, McGovern U, Elliott T, Jones R, Syndikus I, Ralph C, Jain S, Varughese M, et al: Olaparib in patients with metastatic castration-resistant prostate cancer with DNA repair gene aberrations (TOPARP-B): A multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 21:162–174. 2020. View Article : Google Scholar : PubMed/NCBI | |
Markham A: Pamiparib: First Approval. Drugs. 81:1343–1348. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lee A: Fuzuloparib: First Approval. Drugs. 81:1221–1226. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xiao F, Wang Z, Qiao L, Zhang X, Wu N, Wang J and Yu X: Application of PARP inhibitors combined with immune checkpoint inhibitors in ovarian cancer. J Transl Med. 22:7782024. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Qian W, Zhang Y, Hu L, Chen S and Xia Y: A new wave of innovations within the DNA damage response. Signal Transduct Target Ther. 8:3382023. View Article : Google Scholar : PubMed/NCBI | |
Afghahi A, Timms KM, Vinayak S, Jensen KC, Kurian AW, Carlson RW, Chang PJ, Schackmann E, Hartman AR, Ford JM and Telli ML: Tumor BRCA1 reversion mutation arising during neoadjuvant platinum-based chemotherapy in triple-negative breast cancer is associated with therapy resistance. Clin Cancer Res. 23:3365–3370. 2017. View Article : Google Scholar : PubMed/NCBI | |
de Bono J, Ramanathan RK, Mina L, Chugh R, Glaspy J, Rafii S, Kaye S, Sachdev J, Heymach J, Smith DC, et al: Phase I, dose-escalation, two-part trial of the PARP inhibitor talazoparib in patients with advanced germline BRCA1/2 mutations and selected sporadic cancers. Cancer Discov. 7:620–629. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bardia A, Sun S, Thimmiah N, Coates JT, Wu B, Abelman RO, Spring L, Moy B, Ryan P, Melkonyan MN, et al: Antibody-drug conjugate sacituzumab govitecan enables a sequential TOP1/PARP inhibitor therapy strategy in patients with breast cancer. Clin Cancer Res. 30:2917–2924. 2024. View Article : Google Scholar : PubMed/NCBI | |
Rodler ET, Kurland BF, Griffin M, Gralow JR, Porter P, Yeh RF, Gadi VK, Guenthoer J, Beumer JH, Korde L, et al: Phase I study of veliparib (ABT-888) combined with cisplatin and vinorelbine in advanced triple-negative breast cancer and/or BRCA mutation-associated breast cancer. Clin Cancer Res. 22:2855–2864. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K, Hirte H, Huntsman D, Clemons M, Gilks B, et al: Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: A phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12:852–861. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q and Wu K: Recent advances in targeted strategies for triple-negative breast cancer. J Hematol Oncol. 16:1002023. View Article : Google Scholar : PubMed/NCBI | |
Subhan MA, Parveen F, Shah H, Yalamarty SSK, Ataide JA and Torchilin VP: Recent advances with precision medicine treatment for breast cancer including triple-negative sub-type. Cancers (Basel). 15:22042023. View Article : Google Scholar : PubMed/NCBI | |
Won KA and Spruck C: Triple-negative breast cancer therapy: Current and future perspectives (Review). Int J Oncol. 57:1245–1261. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kraus WL: PARPs and ADP-ribosylation: 50 Years … and counting. Mol Cell. 58:902–910. 2015. View Article : Google Scholar : PubMed/NCBI | |
Schreiber V, Dantzer F, Ame JC and de Murcia G: Poly(ADP-ribose): Novel functions for an old molecule. Nat Rev Mol Cell Biol. 7:517–528. 2006. View Article : Google Scholar : PubMed/NCBI | |
Duma L and Ahel I: The function and regulation of ADP-ribosylation in the DNA damage response. Biochem Soc Trans. 51:995–1008. 2023. View Article : Google Scholar : PubMed/NCBI | |
Rouleau-Turcotte É and Pascal JM: ADP-ribose contributions to genome stability and PARP enzyme trapping on sites of DNA damage; paradigm shifts for a coming-of-age modification. J Biol Chem. 299:1053972023. View Article : Google Scholar : PubMed/NCBI | |
Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, Mortimer P, Swaisland H, Lau A, O'Connor MJ, et al: Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 361:123–134. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, Friedlander M, Arun B, Loman N, Schmutzler RK, et al: Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: A proof-of-concept trial. Lancet. 376:235–244. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim D and Nam HJ; PARP inhibitors, : Clinical limitations and recent attempts to overcome them. Int J Mol Sci. 23:84122022. View Article : Google Scholar : PubMed/NCBI | |
Kim MY, Mauro S, Gévry N, Lis JT and Kraus WL: NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell. 119:803–814. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kun E, Kirsten E, Mendeleyev J and Ordahl CP: Regulation of the enzymatic catalysis of poly(ADP-ribose) polymerase by dsDNA, polyamines, Mg2+, Ca2+, histones H1 and H3, and ATP. Biochemistry. 43:210–216. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kraus WL: Transcriptional control by PARP-1: Chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol. 20:294–302. 2008. View Article : Google Scholar : PubMed/NCBI | |
Baek SH, Bae ON, Kim EK and Yu SW: Induction of mitochondrial dysfunction by poly(ADP-ribose) polymer: Implication for neuronal cell death. Mol Cells. 36:258–266. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tuo QZ, Zhang ST and Lei P: Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev. 42:259–305. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Li Y, Yang J, Sun Y, He Y, Wang Y, Liang Y, Chen X, Chen T, Han D, et al: CircCFL1 promotes TNBC stemness and immunoescape via deacetylation-mediated c-Myc deubiquitylation to facilitate mutant TP53 transcription. Adv Sci (Weinh). 11:e24046282024. View Article : Google Scholar : PubMed/NCBI | |
De Souza C, Madden JA, Minn D, Kumar VE, Montoya DJ, Nambiar R, Zhu Z, Xiao WW, Tahmassebi N, Kathi H, et al: The P72R polymorphism in R248Q/W p53 mutants modifies the mutant effect on epithelial to mesenchymal transition phenotype and cell invasion via CXCL1 expression. Int J Mol Sci. 21:80252020. View Article : Google Scholar : PubMed/NCBI | |
Macdonald FH, Yao D, Quinn JA and Greenhalgh DA: PTEN ablation in Ras(Ha)/Fos skin carcinogenesis invokes p53-dependent p21 to delay conversion while p53-independent p21 limits progression via cyclin D1/E2 inhibition. Oncogene. 33:4132–4143. 2014. View Article : Google Scholar : PubMed/NCBI | |
Marvalim C, Datta A and Lee SC: Role of p53 in breast cancer progression: An insight into p53 targeted therapy. Theranostics. 13:1421–1442. 2023. View Article : Google Scholar : PubMed/NCBI | |
Deng CX: Tumorigenesis as a consequence of genetic instability in Brca1 mutant mice. Mutat Res. 477:183–189. 2001. View Article : Google Scholar : PubMed/NCBI | |
Du Y, Luo L, Xu X, Yang X, Yang X, Xiong S, Yu J, Liang T and Guo L: Unleashing the power of synthetic lethality: Augmenting treatment efficacy through synergistic integration with chemotherapy drugs. Pharmaceutics. 15:24332023. View Article : Google Scholar : PubMed/NCBI | |
Anders CK, Winer EP, Ford JM, Dent R, Silver DP, Sledge GW and Carey LA: Poly(ADP-Ribose) polymerase inhibition: ‘Targeted’ therapy for triple-negative breast cancer. Clin Cancer Res. 16:4702–4710. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, Kyle S, Meuth M, Curtin NJ and Helleday T: Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 434:913–917. 2005. View Article : Google Scholar : PubMed/NCBI | |
Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, et al: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 434:917–921. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tarsounas M and Sung P: The antitumorigenic roles of BRCA1-BARD1 in DNA repair and replication. Nat Rev Mol Cell Biol. 21:284–299. 2020. View Article : Google Scholar : PubMed/NCBI | |
Peña-Guerrero J, Fernández-Rubio C, García-Sosa AT and Nguewa PA: BRCT domains: Structure, functions, and implications in disease-new therapeutic targets for innovative drug discovery against infections. Pharmaceutics. 15:18392023. View Article : Google Scholar : PubMed/NCBI | |
Li M and Yu X: Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell. 23:693–704. 2013. View Article : Google Scholar : PubMed/NCBI | |
Becker JR, Clifford G, Bonnet C, Groth A, Wilson MD and Chapman JR: BARD1 reads H2A lysine 15 ubiquitination to direct homologous recombination. Nature. 596:433–437. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Wu J, Paudyal SC, You Z and Yu X: CHFR is important for the first wave of ubiquitination at DNA damage sites. Nucleic Acids Res. 41:1698–1710. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Zhao J, Xiao J, Wu W, Xie L, Xie X, Yang C, Yin D and Hu K: CHFR-mediated degradation of RNF126 confers sensitivity to PARP inhibitors in triple-negative breast cancer cells. Biochem Biophys Res Commun. 573:62–68. 2021. View Article : Google Scholar : PubMed/NCBI | |
Djerir B, Marois I, Dubois JC, Findlay S, Morin T, Senoussi I, Cappadocia L, Orthwein A and Maréchal A: An E3 ubiquitin ligase localization screen uncovers DTX2 as a novel ADP-ribosylation-dependent regulator of DNA double-strand break repair. J Biol Chem. 300:1075452024. View Article : Google Scholar : PubMed/NCBI | |
Yan Q, Xu R, Zhu L, Cheng X, Wang Z, Manis J and Shipp MA: BAL1 and its partner E3 ligase, BBAP, link Poly(ADP-ribose) activation, ubiquitylation, and double-strand DNA repair independent of ATM, MDC1, and RNF8. Mol Cell Biol. 33:845–857. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kolas NK, Chapman JR, Nakada S, Ylanko J, Chahwan R, Sweeney FD, Panier S, Mendez M, Wildenhain J, Thomson TM, et al: Orchestration of the DNA-damage response by the RNF8 ubiquitin ligase. Science. 318:1637–1640. 2007. View Article : Google Scholar : PubMed/NCBI | |
Marteijn JA, Bekker-Jensen S, Mailand N, Lans H, Schwertman P, Gourdin AM, Dantuma NP, Lukas J and Vermeulen W: Nucleotide excision repair-induced H2A ubiquitination is dependent on MDC1 and RNF8 and reveals a universal DNA damage response. J Cell Biol. 186:835–847. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tian H, Luan P, Liu Y and Li G: Tet-mediated DNA methylation dynamics affect chromosome organization. Nucleic Acids Res. 52:3654–3666. 2024. View Article : Google Scholar : PubMed/NCBI | |
Messner S and Hottiger MO: Histone ADP-ribosylation in DNA repair, replication and transcription. Trends Cell Biol. 21:534–542. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hottiger MO: ADP-ribosylation of histones by ARTD1: An additional module of the histone code? FEBS Lett. 585:1595–1599. 2011. View Article : Google Scholar : PubMed/NCBI | |
Messner S, Altmeyer M, Zhao H, Pozivil A, Roschitzki B, Gehrig P, Rutishauser D, Huang D, Caflisch A and Hottiger MO: PARP1 ADP-ribosylates lysine residues of the core histone tails. Nucleic Acids Res. 38:6350–6362. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rouleau M, Patel A, Hendzel MJ, Kaufmann SH and Poirier GG: PARP inhibition: PARP1 and beyond. Nat Rev Cancer. 10:293–301. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Feng X and Koh DW: Enhanced DNA accessibility and increased DNA damage induced by the absence of poly(ADP-ribose) hydrolysis. Biochemistry. 49:7360–7366. 2010. View Article : Google Scholar : PubMed/NCBI | |
Martin BJE, Ablondi EF, Goglia C, Mimoso CA, Espinel-Cabrera PR and Adelman K: Global identification of SWI/SNF targets reveals compensation by EP400. Cell. 186:5290–5307.e26. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wanior M, Krämer A, Knapp S and Joerger AC: Exploiting vulnerabilities of SWI/SNF chromatin remodelling complexes for cancer therapy. Oncogene. 40:3637–3654. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kolthur-Seetharam U, Dantzer F, McBurney MW, de Murcia G and Sassone-Corsi P: Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle. 5:873–877. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sobotka AA and Tempera I: PARP1 as an epigenetic modulator: Implications for the regulation of host-viral dynamics. Pathogens. 13:1312024. View Article : Google Scholar : PubMed/NCBI | |
Ahmad M, Weiswald LB, Poulain L, Denoyelle C and Meryet-Figuiere M: Involvement of lncRNAs in cancer cells migration, invasion and metastasis: Cytoskeleton and ECM crosstalk. J Exp Clin Cancer Res. 42:1732023. View Article : Google Scholar : PubMed/NCBI | |
Bartonicek N, Maag JL and Dinger ME: Long noncoding RNAs in cancer: Mechanisms of action and technological advancements. Mol Cancer. 15:432016. View Article : Google Scholar : PubMed/NCBI | |
Jiang J, Lu Y, Zhang F, Huang J, Ren XL and Zhang R: The emerging roles of long noncoding RNAs as hallmarks of lung cancer. Front Oncol. 11:7615822021. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Zhou B, Gu F, Liu H, Wu H, Yao F, Zheng H, Fu H, Chong W, Cai S, et al: Micropeptide PACMP inhibition elicits synthetic lethal effects by decreasing CtIP and poly(ADP-ribosyl)ation. Mol Cell. 82:1297–1312.e8. 2022. View Article : Google Scholar : PubMed/NCBI | |
Siegel C and McCullough LD: NAD+ depletion or PAR polymer formation: Which plays the role of executioner in ischaemic cell death? Acta Physiol (Oxf). 203:225–234. 2011. View Article : Google Scholar : PubMed/NCBI | |
De P, Sun Y, Carlson JH, Friedman LS, Leyland-Jones BR and Dey N: Doubling down on the PI3K-AKT-mTOR pathway enhances the antitumor efficacy of PARP inhibitor in triple negative breast cancer model beyond BRCA-ness. Neoplasia. 16:43–72. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ding JH, Xiao Y, Yang F, Song XQ, Xu Y, Ding XH, Ding R, Shao ZM, Di GH and Jiang YZ: Guanosine diphosphate-mannose suppresses homologous recombination repair and potentiates antitumor immunity in triple-negative breast cancer. Sci Transl Med. 16:eadg77402024. View Article : Google Scholar : PubMed/NCBI | |
Zhong Y, Le H, Zhang X, Dai Y, Guo F, Ran X, Hu G, Xie Q, Wang D and Cai Y: Identification of restrictive molecules involved in oncolytic virotherapy using genome-wide CRISPR screening. J Hematol Oncol. 17:362024. View Article : Google Scholar : PubMed/NCBI | |
Chen LM, Yang PP, Al Haq AT, Hwang PA, Lai YC, Weng YS, Chen MA and Hsu HL: Oligo-Fucoidan supplementation enhances the effect of Olaparib on preventing metastasis and recurrence of triple-negative breast cancer in mice. J Biomed Sci. 29:702022. View Article : Google Scholar : PubMed/NCBI | |
Rudolph J, Jung K and Luger K: Inhibitors of PARP: Number crunching and structure gazing. Proc Natl Acad Sci USA. 119:e21219791192022. View Article : Google Scholar : PubMed/NCBI | |
Anders C, Deal AM, Abramson V, Liu MC, Storniolo AM, Carpenter JT, Puhalla S, Nanda R, Melhem-Bertrandt A, Lin NU, et al: TBCRC 018: phase II study of iniparib in combination with irinotecan to treat progressive triple negative breast cancer brain metastases. Breast Cancer Res Treat. 146:557–566. 2014. View Article : Google Scholar : PubMed/NCBI | |
Diéras V, Han HS, Kaufman B, Wildiers H, Friedlander M, Ayoub JP, Puhalla SL, Bondarenko I, Campone M, Jakobsen EH, et al: Veliparib with carboplatin and paclitaxel in BRCA-mutated advanced breast cancer (BROCADE3): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 21:1269–1282. 2020. View Article : Google Scholar : PubMed/NCBI | |
Domchek SM, Postel-Vinay S, Im SA, Park YH, Delord JP, Italiano A, Alexandre J, You B, Bastian S, Krebs MG, et al: Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): An open-label, multicentre, phase 1/2, basket study. Lancet Oncol. 21:1155–1164. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shroff RT, Hendifar A, McWilliams RR, Geva R, Epelbaum R, Rolfe L, Goble S, Lin KK, Biankin AV, Giordano H, et al: Rucaparib monotherapy in patients with pancreatic cancer and a known deleterious BRCA mutation. JCO Precis Oncol. 2018.PO.17.00316. 2018. View Article : Google Scholar | |
Zhao M, Qiu S, Wu X, Miao P, Jiang Z, Zhu T, Xu X, Zhu Y, Zhang B, Yuan D, et al: Efficacy and safety of niraparib as first-line maintenance treatment for patients with advanced ovarian cancer: Real-world data from a multicenter study in China. Target Oncol. 18:869–883. 2023. View Article : Google Scholar : PubMed/NCBI | |
Savill KMZ, Ivanova J, Asgarisabet P, Falkenstein A, Balanean A, Niyazov A, Ryan JC, Kish J, Gajra A and Mahtani RL: Characteristics, treatment, and outcomes of real-world talazoparib-treated patients with germline BRCA-mutated advanced HER2-negative breast cancer. Oncologist. 28:414–424. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xu B, Yin Y, Dong M, Song Y, Li W, Huang X, Wang T, He J, Mu X, Li L, et al: Pamiparib dose escalation in Chinese patients with non-mucinous high-grade ovarian cancer or advanced triple-negative breast cancer. Cancer Med. 10:109–118. 2021. View Article : Google Scholar : PubMed/NCBI | |
O'Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C, Koo IC, Sherman BM and Bradley C: Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med. 364:205–214. 2011. View Article : Google Scholar : PubMed/NCBI | |
O'Shaughnessy J, Schwartzberg L, Danso MA, Miller KD, Rugo HS, Neubauer M, Robert N, Hellerstedt B, Saleh M, Richards P, et al: Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J Clin Oncol. 32:3840–3847. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mateo J, Ong M, Tan DS, Gonzalez MA and de Bono JS: Appraising iniparib, the PARP inhibitor that never was-what must we learn? Nat Rev Clin Oncol. 10:688–696. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Shi Y, Maag DX, Palma JP, Patterson MJ, Ellis PA, Surber BW, Ready DB, Soni NB, Ladror US, et al: Iniparib nonselectively modifies cysteine-containing proteins in tumor cells and is not a bona fide PARP inhibitor. Clin Cancer Res. 18:510–523. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu HL, Luo ZY, He ZL, Gong Y, Mo M, Ming WK and Liu GY: All HER2-negative breast cancer patients need gBRCA testing: Cost-effectiveness and clinical benefits. Br J Cancer. 128:638–646. 2023. View Article : Google Scholar : PubMed/NCBI | |
Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmaña J, Mitchell G, Fried G, Stemmer SM, Hubert A, et al: Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 33:244–250. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dent RA, Lindeman GJ, Clemons M, Wildiers H, Chan A, McCarthy NJ, Singer CF, Lowe ES, Watkins CL and Carmichael J: Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. Breast Cancer Res. 15:R882013. View Article : Google Scholar : PubMed/NCBI | |
Liu JF, Tolaney SM, Birrer M, Fleming GF, Buss MK, Dahlberg SE, Lee H, Whalen C, Tyburski K, Winer E, et al: A Phase 1 trial of the poly(ADP-ribose) polymerase inhibitor olaparib (AZD2281) in combination with the anti-angiogenic cediranib (AZD2171) in recurrent epithelial ovarian or triple-negative breast cancer. Eur J Cancer. 49:2972–2978. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lee JM, Hays JL, Annunziata CM, Noonan AM, Minasian L, Zujewski JA, Yu M, Gordon N, Ji J, Sissung TM, et al: Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J Natl Cancer Inst. 106:dju0892014. View Article : Google Scholar : PubMed/NCBI | |
Del Conte G, Sessa C, von Moos R, Viganò L, Digena T, Locatelli A, Gallerani E, Fasolo A, Tessari A, Cathomas R and Gianni L: Phase I study of olaparib in combination with liposomal doxorubicin in patients with advanced solid tumours. Br J Cancer. 111:651–659. 2014. View Article : Google Scholar : PubMed/NCBI | |
Loap P, Loirat D, Berger F, Ricci F, Vincent-Salomon A, Ezzili C, Mosseri V, Fourquet A, Ezzalfani M and Kirova Y: Combination of olaparib and radiation therapy for triple negative breast cancer: Preliminary results of the RADIOPARP phase 1 trial. Int J Radiat Oncol Biol Phys. 109:436–440. 2021. View Article : Google Scholar : PubMed/NCBI | |
Loap P, Loirat D, Berger F, Cao K, Ricci F, Jochem A, Raizonville L, Mosseri V, Fourquet A and Kirova Y: Combination of Olaparib with radiotherapy for triple-negative breast cancers: One-year toxicity report of the RADIOPARP Phase I trial. Int J Cancer. 149:1828–1832. 2021. View Article : Google Scholar : PubMed/NCBI | |
Loap P, Loirat D, Berger F, Rodrigues M, Bazire L, Pierga JY, Vincent-Salomon A, Laki F, Boudali L, Raizonville L, et al: Concurrent Olaparib and radiotherapy in patients with triple-negative breast cancer: The phase 1 Olaparib and radiation therapy for triple-negative breast cancer trial. JAMA Oncol. 8:1802–1808. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ganz PA, Bandos H, Španić T, Friedman S, Müller V, Kuemmel S, Delaloge S, Brain E, Toi M, Yamauchi H, et al: Patient-reported outcomes in OlympiA: A phase III, randomized, placebo-controlled trial of adjuvant Olaparib in gBRCA1/2 mutations and high-risk human epidermal growth factor receptor 2-negative early breast cancer. J Clin Oncol. 42:1288–1300. 2024. View Article : Google Scholar : PubMed/NCBI | |
Plummer R, Jones C, Middleton M, Wilson R, Evans J, Olsen A, Curtin N, Boddy A, McHugh P, Newell D, et al: Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res. 14:7917–7923. 2008. View Article : Google Scholar : PubMed/NCBI | |
Drew Y, Ledermann J, Hall G, Rea D, Glasspool R, Highley M, Jayson G, Sludden J, Murray J, Jamieson D, et al: Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer. Br J Cancer. 114:723–730. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chopra N, Tovey H, Pearson A, Cutts R, Toms C, Proszek P, Hubank M, Dowsett M, Dodson A, Daley F, et al: Homologous recombination DNA repair deficiency and PARP inhibition activity in primary triple negative breast cancer. Nat Commun. 11:26622020. View Article : Google Scholar : PubMed/NCBI | |
Kristeleit R, Leary A, Oaknin A, Redondo A, George A, Chui S, Seiller A, Liste-Hermoso M, Willis J, Shemesh CS, et al: PARP inhibition with rucaparib alone followed by combination with atezolizumab: Phase Ib COUPLET clinical study in advanced gynaecological and triple-negative breast cancers. Br J Cancer. 131:820–831. 2024. View Article : Google Scholar : PubMed/NCBI | |
Sandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, Hylands L, Riisnaes R, Forster M, Omlin A, et al: The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: A phase 1 dose-escalation trial. Lancet Oncol. 14:882–892. 2013. View Article : Google Scholar : PubMed/NCBI | |
van Andel L, Rosing H, Zhang Z, Hughes L, Kansra V, Sanghvi M, Tibben MM, Gebretensae A, Schellens JHM and Beijnen JH: Determination of the absolute oral bioavailability of niraparib by simultaneous administration of a (14)C-microtracer and therapeutic dose in cancer patients. Cancer Chemother Pharmacol. 81:39–46. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mirza MR, Monk BJ, Herrstedt J, Oza AM, Mahner S, Redondo A, Fabbro M, Ledermann JA, Lorusso D, Vergote I, et al: Niraparib maintenance therapy in platinum-sensitive, recurrent ovarian cancer. N Engl J Med. 375:2154–2164. 2016. View Article : Google Scholar : PubMed/NCBI | |
Scott LJ: Niraparib: First global approval. Drugs. 77:1029–1034. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Mason KA, Ang KK, Buchholz T, Valdecanas D, Mathur A, Buser-Doepner C, Toniatti C and Milas L: MK-4827, a PARP-1/-2 inhibitor, strongly enhances response of human lung and breast cancer xenografts to radiation. Invest New Drugs. 30:2113–2120. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Rehman FL, Feng Y, Boshuizen J, Bajrami I, Elliott R, Wang B, Lord CJ, Post LE and Ashworth A: BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res. 19:5003–5015. 2013. View Article : Google Scholar : PubMed/NCBI | |
Litton JK, Beck JT, Jones JM, Andersen J, Blum JL, Mina LA, Brig R, Danso M, Yuan Y, Abbattista A, et al: Neoadjuvant talazoparib in patients with germline BRCA1/2 mutation-positive, early-stage triple-negative breast cancer: Results of a phase II study. Oncologist. 28:845–855. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li L, Fu H, Yao Q, Wang L and Lou L: Combined inhibition of PARP and ATR synergistically potentiates the antitumor activity of HER2-targeting antibody-drug conjugate in HER2-positive cancers. Am J Cancer Res. 13:161–175. 2023.PubMed/NCBI | |
Kozono DE, Stinchcombe TE, Salama JK, Bogart J, Petty WJ, Guarino MJ, Bazhenova L, Larner JM, Weiss J, DiPetrillo TA, et al: Veliparib in combination with carboplatin/paclitaxel-based chemoradiotherapy in patients with stage III non-small cell lung cancer. Lung Cancer. 159:56–65. 2021. View Article : Google Scholar : PubMed/NCBI | |
O'Reilly EM, Lee JW, Zalupski M, Capanu M, Park J, Golan T, Tahover E, Lowery MA, Chou JF, Sahai V, et al: Randomized, multicenter, phase II trial of gemcitabine and cisplatin with or without veliparib in patients with pancreas adenocarcinoma and a germline BRCA/PALB2 mutation. J Clin Oncol. 38:1378–1388. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hussain M, Carducci MA, Slovin S, Cetnar J, Qian J, McKeegan EM, Refici-Buhr M, Chyla B, Shepherd SP, Giranda VL and Alumkal JJ: Targeting DNA repair with combination veliparib (ABT-888) and temozolomide in patients with metastatic castration-resistant prostate cancer. Invest New Drugs. 32:904–912. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gojo I, Beumer JH, Pratz KW, McDevitt MA, Baer MR, Blackford AL, Smith BD, Gore SD, Carraway HE, Showel MM, et al: A phase 1 study of the PARP inhibitor veliparib in combination with temozolomide in acute myeloid leukemia. Clin Cancer Res. 23:697–706. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Shao B, Tong Z, Ouyang Q, Wang Y, Xu G, Li S and Li H: A phase Ib study of camrelizumab in combination with apatinib and fuzuloparib in patients with recurrent or metastatic triple-negative breast cancer. BMC Med. 20:3212022. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang W, Yin R, Zhang Y, Zhang Y, Zhang K, Pan H, Wang K, Lou G, Li G, et al: A phase 1 trial of fuzuloparib in combination with apatinib for advanced ovarian and triple-negative breast cancer: Efficacy, safety, pharmacokinetics and germline BRCA mutation analysis. BMC Med. 21:3762023. View Article : Google Scholar : PubMed/NCBI | |
Friedlander M, Meniawy T, Markman B, Mileshkin L, Harnett P, Millward M, Lundy J, Freimund A, Norris C, Mu S, et al: Pamiparib in combination with tislelizumab in patients with advanced solid tumours: Results from the dose-escalation stage of a multicentre, open-label, phase 1a/b trial. Lancet Oncol. 20:1306–1315. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lord CJ and Ashworth A: Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med. 19:1381–1388. 2013. View Article : Google Scholar : PubMed/NCBI | |
Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S and Pommier Y: Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72:5588–5599. 2012. View Article : Google Scholar : PubMed/NCBI | |
Damale MG, Pathan SK, Shinde DB, Patil RH, Arote RB and Sangshetti JN: Insights of tankyrases: A novel target for drug discovery. Eur J Med Chem. 207:1127122020. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Yang Y, Sykes M and Wang S: Small-molecule inhibitors of tankyrases as prospective therapeutics for cancer. J Med Chem. 65:5244–5273. 2022. View Article : Google Scholar : PubMed/NCBI | |
Smith S, Giriat I, Schmitt A and de Lange T: Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science. 282:1484–1487. 1998. View Article : Google Scholar : PubMed/NCBI | |
Rottenberg S, Jaspers JE, Kersbergen A, van der Burg E, Nygren AO, Zander SA, Derksen PW, de Bruin M, Zevenhoven J, Lau A, et al: High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci USA. 105:17079–17084. 2008. View Article : Google Scholar : PubMed/NCBI | |
Abkevich V, Timms KM, Hennessy BT, Potter J, Carey MS, Meyer LA, Smith-McCune K, Broaddus R, Lu KH, Chen J, et al: Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer. 107:1776–1782. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Chang CW, Huang J, Zeng S, Zhang X, Hung MC and Hou J: Gasdermin C sensitizes tumor cells to PARP inhibitor therapy in cancer models. J Clin Invest. 134:e1668412024. View Article : Google Scholar : PubMed/NCBI | |
Stringer-Reasor EM, May JE, Olariu E, Caterinicchia V, Li Y, Chen D, Della Manna DL, Rocque GB, Vaklavas C, Falkson CI, et al: An open-label, pilot study of veliparib and lapatinib in patients with metastatic, triple-negative breast cancer. Breast Cancer Res. 23:302021. View Article : Google Scholar : PubMed/NCBI | |
Ray Chaudhuri A, Callen E, Ding X, Gogola E, Duarte AA, Lee JE, Wong N, Lafarga V, Calvo JA, Panzarino NJ, et al: Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature. 535:382–387. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tan Q and Xu X: PTIP UFMylation promotes replication fork degradation in BRCA1-deficient cells. J Biol Chem. 300:1073122024. View Article : Google Scholar : PubMed/NCBI | |
Tian T, Chen J, Zhao H, Li Y, Xia F, Huang J, Han J and Liu T: UFL1 triggers replication fork degradation by MRE11 in BRCA1/2-deficient cells. Nat Chem Biol. 20:1650–1661. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tutt ANJ, Garber JE, Kaufman B, Viale G, Fumagalli D, Rastogi P, Gelber RD, de Azambuja E, Fielding A, Balmaña J, et al: Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med. 384:2394–2405. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gelmon KA, Fasching PA, Couch FJ, Balmaña J, Delaloge S, Labidi-Galy I, Bennett J, McCutcheon S, Walker G and O'Shaughnessy J; Collaborating Investigator, : Clinical effectiveness of olaparib monotherapy in germline BRCA-mutated, HER2-negative metastatic breast cancer in a real-world setting: Phase IIIb LUCY interim analysis. Eur J Cancer. 152:68–77. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pusztai L, Yau C, Wolf DM, Han HS, Du L, Wallace AM, String-Reasor E, Boughey JC, Chien AJ, Elias AD, et al: Durvalumab with olaparib and paclitaxel for high-risk HER2-negative stage II/III breast cancer: Results from the adaptively randomized I-SPY2 trial. Cancer Cell. 39:989–998.e5. 2021. View Article : Google Scholar : PubMed/NCBI | |
Batalini F, Xiong N, Tayob N, Polak M, Eismann J, Cantley LC, Shapiro GI, Adalsteinsson V, Winer EP, Konstantinopoulos PA, et al: Phase 1b clinical trial with alpelisib plus olaparib for patients with advanced triple-negative breast cancer. Clin Cancer Res. 28:1493–1499. 2022. View Article : Google Scholar : PubMed/NCBI | |
Geyer CE Jr, Garber JE, Gelber RD, Yothers G, Taboada M, Ross L, Rastogi P, Cui K, Arahmani A, Aktan G, et al: Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high-risk, early breast cancer. Ann Oncol. 33:1250–1268. 2022. View Article : Google Scholar : PubMed/NCBI | |
Robson ME, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Tung N, Armstrong A, Dymond M, et al: OlympiAD extended follow-up for overall survival and safety: Olaparib versus chemotherapy treatment of physician's choice in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer. Eur J Cancer. 184:39–47. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yamauchi H, Toi M, Takayama S, Nakamura S, Takano T, Cui K, Campbell C, De Vos L, Geyer C Jr and Tutt A: Adjuvant olaparib in the subset of patients from Japan with BRCA1- or BRCA2-mutated high-risk early breast cancer from the phase 3 OlympiA trial. Breast Cancer. 30:596–605. 2023. View Article : Google Scholar : PubMed/NCBI | |
Senkus E, Delaloge S, Domchek SM, Conte P, Im SA, Xu B, Armstrong A, Masuda N, Fielding A, Robson M and Tung N: Olaparib efficacy in patients with germline BRCA-mutated, HER2-negative metastatic breast cancer: Subgroup analyses from the phase III OlympiAD trial. Int J Cancer. 153:803–814. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ring A, Kilburn LS, Pearson A, Moretti L, Afshari-Mehr A, Wardley AM, Gurel B, Macpherson IR, Riisnaes R, Baird RD, et al: Olaparib and ceralasertib (AZD6738) in patients with triple-negative advanced breast cancer: Results from cohort E of the plasmaMATCH trial (CRUK/15/010). Clin Cancer Res. 29:4751–4759. 2023. View Article : Google Scholar : PubMed/NCBI | |
Balmaña J, Fasching PA, Couch FJ, Delaloge S, Labidi-Galy I, O'Shaughnessy J, Park YH, Eisen AF, You B, Bourgeois H, et al: Clinical effectiveness and safety of olaparib in BRCA-mutated, HER2-negative metastatic breast cancer in a real-world setting: Final analysis of LUCY. Breast Cancer Res Treat. 204:237–248. 2024. View Article : Google Scholar : PubMed/NCBI | |
Tan TJ, Sammons S, Im YH, She L, Mundy K, Bigelow R, Traina TA, Anders C, Yeong J, Renzulli E, et al: Phase II DORA study of olaparib with or without durvalumab as a chemotherapy-free maintenance strategy in platinum-pretreated advanced triple-negative breast cancer. Clin Cancer Res. 30:1240–1247. 2024. View Article : Google Scholar : PubMed/NCBI | |
Abraham JE, Pinilla K, Dayimu A, Grybowicz L, Demiris N, Harvey C, Drewett LM, Lucey R, Fulton A, Roberts AN, et al: The PARTNER trial of neoadjuvant olaparib with chemotherapy in triple-negative breast cancer. Nature. 629:1142–1148. 2024. View Article : Google Scholar : PubMed/NCBI | |
Litton JK, Rugo HS, Ettl J, Hurvitz SA, Gonçalves A, Lee KH, Fehrenbacher L, Yerushalmi R, Mina LA, Martin M, et al: Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 379:753–763. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ettl J, Quek RGW, Lee KH, Rugo HS, Hurvitz S, Gonçalves A, Fehrenbacher L, Yerushalmi R, Mina LA, Martin M, et al: Quality of life with talazoparib versus physician's choice of chemotherapy in patients with advanced breast cancer and germline BRCA1/2 mutation: Patient-reported outcomes from the EMBRACA phase III trial. Ann Oncol. 29:1939–1947. 2018. View Article : Google Scholar : PubMed/NCBI | |
Litton JK, Scoggins ME, Hess KR, Adrada BE, Murthy RK, Damodaran S, DeSnyder SM, Brewster AM, Barcenas CH, Valero V, et al: Neoadjuvant talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant. J Clin Oncol. 38:388–394. 2020. View Article : Google Scholar : PubMed/NCBI | |
Litton JK, Hurvitz SA, Mina LA, Rugo HS, Lee KH, Gonçalves A, Diab S, Woodward N, Goodwin A, Yerushalmi R, et al: Talazoparib versus chemotherapy in patients with germline BRCA1/2-mutated HER2-negative advanced breast cancer: Final overall survival results from the EMBRACA trial. Ann Oncol. 31:1526–1535. 2020. View Article : Google Scholar : PubMed/NCBI |