
Role of antidiarrheal agents nifuroxazide in antitumor multi‑target anticancer, multi‑mechanism anticancer drug (Review)
- Authors:
- Liping Liu
- Chengshan Ma
- Jinfeng Ji
- Rong Gao
- Deliang Li
-
Affiliations: Oncology Department, Qingdao Endocrine and Diabetes Hospital, Qingdao, Shandong 266000, P.R. China, Department of Orthopedic Surgery, Affiliated Hospital of Shandong First Medical University, Jinan, Shandong 250000, P.R. China, Oncology Department, Qingdao Endocrine and Diabetes Hospital, Qingdao, Shandong 266000, P.R. China, Emergency Department, Affiliated Hospital of Qingdao University, Qingdao, Shandong 266100, P.R. China - Published online on: April 2, 2025 https://doi.org/10.3892/ol.2025.15006
- Article Number: 260
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Carron MCE: Antibacterial nitrofurfuryldene derivatives and methods of using same. US Patent US3290213, Filed July 9, 1962. issued December 6. 1966. | |
B Fernandes M, Gonçalves JE, C Tavares L and Storpirtis S: Caco-2 cells permeability evaluation of nifuroxazide derivatives with potential activity against methicillin-resistant Staphylococcus aureus (MRSA). Drug Dev Ind Pharm. 41:1066–1072. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bailly C: Toward a repositioning of the antibacterial drug nifuroxazide for cancer treatment. Drug Discov Today. 24:1930–1936. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nelson EA, Walker SR, Kepich A, Gashin LB, Hideshima T, Ikeda H, Chauhan D, Anderson KC and Frank DA: Nifuroxazide inhibits survival of multiple myeloma cells by directly inhibiting STAT3. Blood. 112:5095–5102. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li D, Liu L, Li F, Ma C and Ge K: Nifuroxazide induces the apoptosis of human non-small cell lung cancer cells through the endoplasmic reticulum stress PERK signaling pathway. Oncol Lett. 25:2482023. View Article : Google Scholar : PubMed/NCBI | |
Zhao T, Wei P, Zhang C, Zhou S, Liang L, Guo S, Yin Z, Cheng S, Gan Z, Xia Y, et al: Nifuroxazide suppresses PD-L1 expression and enhances the efficacy of radiotherapy in hepatocellular carcinoma. Elife. 12:RP909112024. View Article : Google Scholar : PubMed/NCBI | |
Amin FM, Sharawy MH, Amin MN, El-Sherbiny M, Said E, Salem HA and Ibrahim TM: Nifuroxazide mitigates doxorubicin-induced cardiovascular injury: Insight into oxidative/NLRP3/GSDMD-mediated pyroptotic signaling modulation. Life Sci. 314:1213112023. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Zeng A, Fang A, Song L, Fan C, Zeng C, Ye T, Chen H, Tu C and Xie Y: Nifuroxazide induces apoptosis, inhibits cell migration and invasion in osteosarcoma. Invest New Drugs. 37:1006–1013. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hindupur SV, Schmid SC, Koch JA, Youssef A, Baur EM, Wang D, Horn T, Slotta-Huspenina J, Gschwend JE, Holm PS and Nawroth R: STAT3/5 inhibitors suppress proliferation in bladder cancer and enhance oncolytic adenovirus therapy. Int J Mol Sci. 21:11062020. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Shi W, Wang X, Lu JJ, He P, Zhang H and Chen X: Nifuroxazide boosts the anticancer efficacy of palbociclib-induced senescence by dual inhibition of STAT3 and CDK2 in triple-negative breast cancer. Cell Death Discov. 9:3552023. View Article : Google Scholar : PubMed/NCBI | |
El-Sherbiny M, El-Sayed RM, Helal MA, Ibrahiem AT, Elmahdi HS, Eladl MA, Bilay SE, Alshahrani AM, Tawfik MK, Hamed ZE, et al: Nifuroxazide mitigates angiogenesis in ehlrich's solid carcinoma: molecular docking, bioinformatic and experimental studies on inhibition of Il-6/Jak2/Stat3 signaling. Molecules. 26:68582021. View Article : Google Scholar : PubMed/NCBI | |
Zhao T, Jia H, Cheng Q, Xiao Y, Li M, Ren W, Li C, Feng Y, Feng Z, Wang H and Zheng J: Nifuroxazide prompts antitumor immune response of TCL-loaded DC in mice with orthotopically-implanted hepatocarcinoma. Oncol Rep. 37:3405–3414. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ye TH, Yang FF, Zhu YX, Li YL, Lei Q, Song XJ, Xia Y, Xiong Y, Zhang LD, Wang NY, et al: Inhibition of Stat3 signaling pathway by nifuroxazide improves antitumor immunity and impairs colorectal carcinoma metastasis. Cell Death Dis. 8:e25342017. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Hu M, Lei Q, Xia Y, Zhu Y, Song X, Li Y, Jie H, Liu C, Xiong Y, et al: Nifuroxazide induces apoptosis and impairs pulmonary metastasis in breast cancer model. Cell Death Dis. 6:e17012015. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Lee H, Herrmann A, Buettner R and Jove R: Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nat Rev Cancer. 14:736–746. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huynh J, Etemadi N, Hollande F, Ernst M and Buchert M: The JAK/STAT3 axis: A comprehensive drug target for solid malignancies. Semin Cancer Biol. 45:13–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jung KH, Yoo W, Stevenson HL, Deshpande D, Shen H, Gagea M, Yoo SY, Wang J, Eckols TK, Bharadwaj U, et al: Multi-functional effects of a small-molecule STAT3 inhibitor on NASH and HCC in mice. Clin Cancer Res. 23:5537–5546. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo C, Yang G, Khun K, Kong X, Levy D, Lee P and Melamed J: Activation of Stat3 in renal tumors. Am J Transl Res. 1:283–290. 2009.PubMed/NCBI | |
Tong M, Wang J, Jiang N, Pan H and Li D: Correlation between p-STAT3 overexpression and prognosis in lung cancer: A systematic review and meta-analysis. PLoS One. 12:e01822822017. View Article : Google Scholar : PubMed/NCBI | |
Takemoto S, Ushijima K, Kawano K, Yamaguchi T, Terada A, Fujiyoshi N, Nishio S, Tsuda N, Ijichi M, Kakuma T, et al: Expression of activated signal transducer and activator of transcription-3 predicts poor prognosis in cervical squamous-cell carcinoma. Br J Cancer. 101:967–972. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen CL, Cen L, Kohout J, Hutzen B, Chan C, Hsieh FC, Loy A, Huang V, Cheng G and Lin J: Signal transducer and activator of transcription 3 activation is associated with bladder cancer cell growth and survival. Mol Cancer. 7:782008. View Article : Google Scholar : PubMed/NCBI | |
Hammarén HM, Virtanen AT, Raivola J and Silvennoinen O: The regulation of JAKs in cytokine signaling and its breakdown in disease. Cytokine. 118:48–63. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jia H, Cui J, Jia X, Zhao J, Feng Y, Zhao P, Zang D, Yu J, Zhao T, Wang H and Xu K: Therapeutic effects of STAT3 inhibition by nifuroxazide on murine acute graft graft-vs.-host disease: Old drug, new use. Mol Med Rep. 16:9480–9486. 2017. View Article : Google Scholar : PubMed/NCBI | |
Althagafy HS, El-Aziz MKA, Ibrahim IM, Abd-Alhameed EK and Hassanein EHM: Pharmacological updates of nifuroxazide: Promising preclinical effects and the underlying molecular mechanisms. Eur J Pharmacol. 951:1757762023. View Article : Google Scholar : PubMed/NCBI | |
Hasson TS, Said E and Helal MG: Nifuroxazide modulates hepatic expression of LXRs/SR-BI/CES1/CYP7A1 and LDL-R and attenuates experimentally-induced hypercholesterolemia and the associated cardiovascular complications. Life Sci. 306:1207902022. View Article : Google Scholar : PubMed/NCBI | |
Kishimoto T and Ishizaka K: Regulation of antibody response in vitro. X. Biphasic effect of cyclic AMP on the secondary anti-hapten antibody response to anti-immunoglobulin and enhancing soluble factor. J Immunol. 116:534–541. 1976. View Article : Google Scholar : PubMed/NCBI | |
Darnell JE Jr: Transcription factors as targets for cancer therapy. Nat Rev Cancer. 2:740–749. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hirano T: Interleukin 6 and its receptor: ten years later. Int Rev Immunol. 16:249–284. 1998. View Article : Google Scholar : PubMed/NCBI | |
Brumfftt W, Reynolds AV and Hamilton-Miller JM: Letter: Activity of nitrofurantoin and nifuratel against anaerobic gram-negative bacilli. Lancet. 1:4601975. View Article : Google Scholar | |
Kang S, Narazaki M, Metwally H and Kishimoto T: Historical overview of the interleukin-6 family cytokine. J Exp Med. 217:e201903472020. View Article : Google Scholar : PubMed/NCBI | |
Hirano T and Kishimoto T: Interleukin-6. Peptide Growth Factors and Their Receptors I. Sporn MB and Roberts AB: Springer; Berlin: pp. p6331990, View Article : Google Scholar | |
Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Newen G and Schaper F: Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 374:1–20. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kamimura D, Ishihara K and Hirano T: IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol. 149:1–38. 2003. View Article : Google Scholar : PubMed/NCBI | |
Hasegawa H, Mizoguchi I, Chiba Y, Ohashi M, Xu M and Yoshimoto T: Expanding diversity in molecular structures and functions of the IL-6/IL-12 heterodimeric cytokine family. Front Immunol. 7:4792016. View Article : Google Scholar : PubMed/NCBI | |
Polatti F: Bacterial vaginosis, Atopobium vaginae and nifuratel. Curr Clin Pharmacol. 7:36–40. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Wang L, Lin HK, Kan PY, Xie S, Tsai MY, Wang PH, Chen YT and Chang C: Interleukin-6 differentially regulates androgen receptor transactivation via PI3K-Akt, STAT3, and MAPK, three distinct signal pathways in prostate cancer cells. Biochem Biophys Res Commun. 305:462–469. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Pardoll D and Jove R: STATs in cancer Inflammation and immunity: A leading role for STAT3. Nat Rev Cancer. 9:798–809. 2009. View Article : Google Scholar : PubMed/NCBI | |
Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernández-Luna JL, Nuñez G, et al: Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity. 10:105–115. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zilberstein A, Ruggieri R, Korn JH and Revel M: Structure and expression of cDNA and genes for human interferon-beta-2, a distinct species inducible by growth-stimulatory cytokines. EMBO J. 5:2529–2537. 1986. View Article : Google Scholar : PubMed/NCBI | |
Haegeman G, Content J, Volckaert G, Derynck R, Tavernier J and Fier W: Structural analysis of the sequence coding for an inducible 26-kDa protein in human fibroblasts. Eur J Biochem. 159:625–632. 1986. View Article : Google Scholar : PubMed/NCBI | |
Kubo M, Hanada T and Yoshimura A: Suppressors of cytokine signaling and immunity. Nat Immunol. 4:1169–1176. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhong Z, Wen Z and Darnell JE Jr: Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 264:95–98. 1994. View Article : Google Scholar : PubMed/NCBI | |
Lieblein JC, Ball S, Hutzen B, Sasser AK, Lin HJ, Huang TH, Hall BM and Lin J: STAT3 can be activated through paracrine signaling in breast epithelial cells. BMC Cancer. 8:3022008. View Article : Google Scholar : PubMed/NCBI | |
Chang Q, Bournazou E, Sansone P, Berishaj M, Gao SP, Daly L, Wels J, Theilen T, Granitto S, Zhang X, et al: The IL6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia. 15:848–862. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fukada T, Hibi M, Yamanaka Y, Takahashi-Tezuka M, Fujitani Y, Yamaguchi T, Nakajima K and Hirano T: Two signals are necessary for cell proliferation induced by a cytokine receptorGp130: Involvementof STAT3 inAnti-apoptosis. Immunity. 5:449–460. 1996. View Article : Google Scholar : PubMed/NCBI | |
Leslie K, Lang C, Devgan G, Azare J, Berishaj M, Gerald W, Kim YB, Paz K, Darnell JE, Albanese C, et al: Cyclin D1 is transcriptionally regulated by and required for transformation by activated signal transducer and activator of transcription 3. Cancer Res. 66:2544–2552. 2006. View Article : Google Scholar : PubMed/NCBI | |
Burke WM, Jin X, Lin HJ, Huang M, Liu R, Reynolds RK and Lin J: Inhibition of constitutively active stat3 suppresses growth of human ovarian and breast cancer cells. Oncogene. 20:7925–7934. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lee HT, Xue J, Chou PC, Zhou A, Yang P, Conrad CA, Aldape KD, Priebe W, Patterson C, Sawaya R, et al: Stat3 orchestrates interaction between endothelial and tumor cells and inhibition of stat3 suppresses brain metastasis of breast cancer cells. Oncotarget. 6:10016–10029. 2015. View Article : Google Scholar : PubMed/NCBI | |
Vageli DP, Doukas PG, Siametis A and Judson BL: Targeting STAT3 prevents bile reflux-induced oncogenic molecular events linked to hypopharyngeal carcinogenesis. J Cell Mol Med. 26:75–87. 2022. View Article : Google Scholar : PubMed/NCBI | |
Manore SG, Doheny DL, Wong GL and Lo HW: IL-6/JAK/STAT3 signaling in breast cancer metastasis: Biology and treatment. Front Oncol. 12:8660142022. View Article : Google Scholar : PubMed/NCBI | |
Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura S, Nakajima K, Koyama K, Iwamatsu A, et al: Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature. 324:73–76. 1986. View Article : Google Scholar : PubMed/NCBI | |
Gauldie J, Richards C, Harnish D, Lansdorp P and Baumann H: Interferon beta 2/B-Cell stimulatory factor type 2 shares identity with monocyte-derived hepatocyte-stimulating factor and regulates the major acute phase protein response in liver cells. Proc Natl Acad Sci USA. 84:7251–7255. 1987. View Article : Google Scholar : PubMed/NCBI | |
Brakenhoff JP, de Groot ER, Evers RF, Pannekoek H and Aarden LA: molecular cloning and expression of hybridoma growth factor in escherichia coli. J Immunol. 139:4116–4121. 1987. View Article : Google Scholar : PubMed/NCBI | |
Lo HW, Hsu SC, Xia W, Cao X, Shih JY, Wei Y, Abbruzzese JL, Hortobagyi GN and Hung MC: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res. 67:9066–9076. 2007. View Article : Google Scholar : PubMed/NCBI | |
Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J, Zhang S, Wang T, Sinibaldi D, Coppola D, et al: Constitutive Stat3 Activity Up-Regulates VEGF expression and tumor angiogenesis. Oncogene. 21:2000–2008. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kortylewski M and Yu H: Role of stat3 in suppressing anti-tumor immunity. Curr Opin Immunol. 20:228–233. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Bhattacharya R, Gabrilovich D, Heller R, Coppola D, et al: Regulation of the innate and adaptive immune responses by stat-3 signaling in tumor cells. Nat Med. 10:48–54. 2004. View Article : Google Scholar : PubMed/NCBI | |
Carpenter RL and Lo HW: STAT3 target genes relevant to human cancers. Cancers (Basel). 6:897–925. 2014. View Article : Google Scholar : PubMed/NCBI | |
Alvarez JV, Febbo PG, Ramaswamy S, Loda M, Richardson A and Frank DA: Identification of a genetic signature of activated signal transducer and activator of transcription 3 in human tumors. Cancer Res. 65:5054–5062. 2005. View Article : Google Scholar : PubMed/NCBI | |
Dechow TN, Pedranzini L, Leitch A, Leslie K, Gerald WL, Linkov I and Bromberg JF: Requirement of matrix metalloproteinase-9 for the transformation of human mammary epithelial cells by stat3-C. Proc Natl Acad Sci USA. 101:10602–10607. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kujawski M, Kortylewski M, Lee H, Herrmann A, Kay H and Yu H: Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest. 118:3367–3377. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jiang M, Chen J, Zhang W, Zhang R, Ye Y, Liu P, Yu W, Wei F, Ren X and Yu J: Interleukin-6 transsignaling pathway promotes immunosuppressive myeloid-derived suppressor cells via suppression of suppressor of cytokine signaling 3 in breast cancer. Front Immunol. 8:18402017. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Yao Z, Liu S, Tang H and Yan X: An oligonucleotide decoy for stat3 activates the immune response of macrophages to breast cancer. Immunobiology. 211:199–209. 2006. View Article : Google Scholar : PubMed/NCBI | |
Jones LM, Broz ML, Ranger JJ, Ozcelik J, Ahn R, Zuo D, Ursini-Siegel J, Hallett MT, Krummel M and Muller WJ: STAT3 establishes an immunosuppressive microenvironment during the early stages of breast carcinogenesis to promote tumor growth and metastasis. Cancer Res. 76:1416–1428. 2016. View Article : Google Scholar : PubMed/NCBI | |
Iliopoulos D, Hirsch HA and Struhl K: An epigenetic switch involving NF-KappaB, Lin28, Let-7 MicroRNA, and IL6 links Inflammation to cell transformation. Cell. 139:693–706. 2009. View Article : Google Scholar : PubMed/NCBI | |
Barbieri I, Pensa S, Pannellini T, Quaglino E, Maritano D, Demaria M, Voster A, Turkson J, Cavallo F, Watson CJ, et al: Constitutively active stat3 enhances neu-mediated migration and metastasis in mammary tumors via upregulation of Cten. Cancer Res. 70:2558–2567. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Kortylewski M and Pardoll D: Crosstalk between cancer and immune cells: Role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 7:41–51. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wei D, Le X, Zheng L, Wang L, Frey JA, Gao AC, Peng Z, Huang S, Xiong HQ, Abbruzzese J and Xie K: Stat3 activation regulates the expression of vascular endothelial growth factor and human pancreatic cancer angiogenesis and metastasis. Oncogene. 22:319–329. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen RY, Yen CJ, Liu YW, Guo CG, Weng CY, Lai CH, Wang JM, Lin YJ and Hung LY: CPAP promotes angiogenesis and metastasis by enhancing STAT3 activity. Cell Death Differ. 27:1259–1273. 2020. View Article : Google Scholar : PubMed/NCBI | |
Johnson DE, O'Keefe RA and Grandis JR: Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 15:234–248. 2018. View Article : Google Scholar : PubMed/NCBI | |
Khatib A, Solaimuthu B, Ben Yosef M, Abu Rmaileh A, Tanna M, Oren G, Schlesinger Frisch M, Axelrod JH, Lichtenstein M and Shaul YD: The glutathione peroxidase 8 (GPX8)/IL-6/STAT3 axis is essential in maintaining an aggressive breast cancer phenotype. Proc Natl Acad Sci USA. 117:21420–21431. 2020. View Article : Google Scholar : PubMed/NCBI | |
Siersbæk R, Scabia V, Nagarajan S, Chernukhin I, Papachristou EK, Broome R, Johnston SJ, Joosten SEP, Green AR, Kumar S, et al: IL6/STAT3 signaling hijacks estrogen receptor α enhancers to drive breast cancer metastasis. Cancer Cell. 38:412–423.e9. 2020. View Article : Google Scholar | |
Liu JY, Zhang YC, Song LN, Zhang L, Yang FY, Zhu XR, Cheng ZQ, Cao X and Yang JK: Nifuroxazide ameliorates lipid and glucose metabolism in palmitate-induced HepG2 cells. RSC Adv. 9:39394–39404. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Fahrmann JF, Lee H, Li YJ, Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, et al: JAK/STAT3-regulated fatty acid β-oxidation is critical for breast cancer stem cell self-renewal and chemoresistance. Cell Metab. 27:136–150.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sarvi S, Crispin R, Lu Y, Zeng L, Hurley TD, Houston DR, von Kriegsheim A, Chen CH, Mochly-Rosen D, Ranzani M, et al: ALDH1 bioactivates nifuroxazide to eradicate ALDHHigh melanoma-initiating cells. Cell Chem Biol. 25:1456–1469.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou L, Ishizaki H, Spitzer M, Taylor KL, Temperley ND, Johnson SL, Brear P, Gautier P, Zeng Z, Mitchell A, et al: ALDH2 mediates 5-nitrofuran activity in multiple species. Cell Chem Biol. 27:14522020. View Article : Google Scholar : PubMed/NCBI | |
Ismail IH and Hendzel MJ: The gamma-H2A.X: Is it just a surrogate marker of double-strand breaks or much more? Environ Mol Mutagen. 49:73–82. 2008. View Article : Google Scholar : PubMed/NCBI | |
Genin M, Clement F, Fattaccioli A, Raes M and Michiels C: M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 15:5772015. View Article : Google Scholar : PubMed/NCBI | |
Sizemore GM, Pitarresi JR, Balakrishnan S and Ostrowski MC: The ETS family of oncogenic transcription factorsin solid tumors. Nat Rev Cancer. 17:337–351. 2017. View Article : Google Scholar : PubMed/NCBI | |
Verger A, Buisine E, Carrere S, Wintjens R, Flourens A, Coll J, Stéhelin D and Duterque-Coquillaud M: Identification of amino acid residues in the ETS transcription factor Erg that mediate Erg-Jun/Fos-DNA ternary complex formation. J Biol Chem. 276:17181–17189. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bassuk AG, Anandappa RT and Leiden JM: Physical interactions between Ets and NF-kappaB/NFAT proteins play an important role in their cooperative activation of the human immunodeficiency virus enhancer in T cells. J Virol. 71:3563–3573. 1997. View Article : Google Scholar : PubMed/NCBI | |
Li C, Zhang J, Wu Q, Kumar A, Pan G and Kelvin DJ: Nifuroxazide activates the parthanatos to overcome TMPRSS2: ERG fusion-positive prostate cancer. Mol Cancer Ther. 22:306–316. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cobrinik D: Pocket proteins and cell cycle control. Oncogene. 24:2796–2809. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kron KJ, Murison A, Zhou S, Huang V, Yamaguchi TN, Shiah YJ, Fraser M, van der Kwast T, Boutros PC, Bristow RG and Lupien M: TMPRSS2-ERG fusion co-opts master transcription factors and activates NOTCH signaling in primary prostate cancer. Nat Genet. 49:1336–1345. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, An R, Umanah GK, Park H, Nambiar K, Eacker SM, Kim B, Bao L, Harraz MM, Chang C, et al: A nuclease that mediates cell death induced by DNA damage and poly(ADP-ribose) polymerase-1. Science. 354:aad68722016. View Article : Google Scholar : PubMed/NCBI | |
Tak J, Nguyen TK, Lee K, Kim SG and Ahn HC: Utilizing machine learning to identify nifuroxazide as an inhibitor of ubiquitin-specific protease 21 in a drug repositioning strategy. Biomed Pharmacother. 174:1164592024. View Article : Google Scholar : PubMed/NCBI | |
Harrigan JA, Jacq X, Martin NM and Jackson SP: Deubiquitylating enzymes and drug discovery: Emerging opportunities. Nat Rev Drug Discov. 17:57–78. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kanan D, Kanan T, Dogan B, Orhan MD, Avsar T and Durdagi S: An integrated in silico approach and in vitro study for the discovery of small-molecule USP7 inhibitors as potential cancer therapies. ChemMedChem. 16:555–567. 2021. View Article : Google Scholar : PubMed/NCBI | |
Saito Y, Kishimoto M, Yoshizawa Y and Kawaii S: Synthesis and structure-activity relationship studies of furan-ring fused chalcones as antiproliferative agents. Anticancer Res. 35:811–817. 2015.PubMed/NCBI | |
Al Koussa HK, Abrahamian CF, Elzahhar PM, Serie MA, Belal A and El-Yazbi AF: A novel series of nitrofuran derivatives produces an anti-tumor effect via a p53-dependent mechanism. FASEB J. 34:12020. View Article : Google Scholar | |
Ashraf Z, Mahmood T, Hassan M, Afzal S, Rafique H, Afzal K and Latip J: Dexibuprofen amide derivatives as potential anticancer agents: Synthesis, in silico docking, bioevaluation, and molecular dynamic simulation. Drug Des Devel Ther. 13:1643–1657. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo Q, Shi D, Lin L, Li H, Wei Y, Li B and Wu D: De-ubiquitinating enzymes USP21 regulate MAPK1 expression by binding to transcription factor GATA3 to regulate tumor growth and cell stemness of gastric cancer. Front Cell Dev Biol. 9:6419812021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Chen Z, Tang Q, Wang Z, Lu J, You Y and Wang H: USP21 promotes self-renewal and tumorigenicity of mesenchymal glioblastoma stem cells by deubiquitinating and stabilizing FOXD1. Cell Death Dis. 13:7122022. View Article : Google Scholar : PubMed/NCBI | |
Ali SH, Osmaniye D, Sağlık BN, Levent S, Özkay Y and Kaplancıklı ZA: Design, synthesis, and molecular docking studies of novel quinoxaline derivatives as anticancer agents. Chem Biol Drug Des. 102:303–315. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hou P, Ma X, Zhang Q, Wu CJ, Liao W, Li J, Wang H, Zhao J, Zhou X, Guan C, et al: USP21 deubiquitinase promotes pancreas cancer cell stemness via Wnt pathway activation. Genes Dev. 33:1361–1366. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Yao Y, Ding H, Han C, Chen Y, Zhang Y, Wang C, Zhang X, Zhang Y, Zhai Y, et al: USP21 deubiquitylates Nanog to regulate protein stability and stem cell pluripotency. Signal Transduct Target Ther. 1:160242016. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Zhou B and Chen D: USP21 promotes cell proliferation and metastasis through suppressing EZH2 ubiquitination in bladder carcinoma. Onco Targets Ther. 10:681–689. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu P, Xiao H, Yang Q, Hu R, Jiang L, Bi R, Jiang X, Wang L, Mei J, Ding F and Huang J: The USP21/YY1/SNHG16 axis contributes to tumor proliferation, migration, and invasion of non-small-cell lung cancer. Exp Mol Med. 52:41–55. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li W, Cui K, Prochownik EV and Li Y: The deubiquitinase USP21 stabilizes MEK2 to promote tumor growth. Cell Death Dis. 9:4822018. View Article : Google Scholar : PubMed/NCBI | |
Hassanein EHM, Abdel-Reheim MA, Althagafy HS, Hemeda MS, Gad RA and Abdel-Sattar AR: Nifuroxazide attenuates indomethacin-induced renal injury by upregulating Nrf2/HO-1 and cytoglobin and suppressing NADPH-oxidase, NF-κB, and JAK-1/STAT3 signals. Naunyn Schmiedebergs Arch Pharmacol. 397:3985–3994. 2024. View Article : Google Scholar : PubMed/NCBI | |
Mcintosh MT, Koganti S, Boatwright JL, Li X, Spadaro SV, Brantly AC, Ayers JB, Perez RD, Burton EM, Burgula S, et al: STAT3 imparts BRCAness by impairing homologous recombination repair in Epstein-Barr virus-transformed B lymphocytes. PLoS Pathog. 16:e10088492020. View Article : Google Scholar : PubMed/NCBI | |
Ettner NM, Vijayaraghavan S, Durak MG, Bui T, Kohansal M, Ha MJ, Liu B, Rao X, Wang J, Yi M, et al: Combined inhibition of STAT3 and DNA repair in palbociclib-resistant ER-positive breast cancer. Clin Cancer Res. 25:3996–4013. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Liu W, Liu M, Wang H, Zhou L, Chen J, Sun H, Wei X, Fan M, Yang M, et al: Nifuroxazide in combination with CpG ODN exerts greater efficacy against hepatocellular carcinoma. Int Immunopharmacol. 108:1089112022. View Article : Google Scholar : PubMed/NCBI | |
Misra SK, Wu Z, Ostadhossein F, Ye M, Boateng K, Schulten K, Tajkhorshid E and Pan D: Pro-nifuroxazide self-assembly leads to triggerable nanomedicine for anti-cancer therapy. ACS Appl Mater Interfaces. 11:18074–18089. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luo L, Xu F, Peng H, Luo Y, Tian X, Battaglia G, Zhang H, Gong Q, Gu Z and Luo K: Stimuli-responsive polymeric prodrug-based nanomedicine delivering nifuroxazide and doxorubicin against primary breast cancer and pulmonary metastasis. J Control Release. 318:124–135. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao T, Feng Y, Guo M, Zhang C, Wu Q, Chen J, Guo S, Liu S, Zhou Q, Wang Z, et al: Combination of attenuated Salmonella carrying PD-1 siRNA with nifuroxazide for colon cancer therapy. J Cell Biochem. 121:1973–1985. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wong ALA, Hirpara JL, Pervaiz S, Eu JQ, Sethi G and Goh BC: Do STAT3 inhibitors have potential in the future for cancer therapy? Expert Opin Investig Drugs. 26:883–887. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shindano A, Marot L and Geubel AP: Nifuroxazide-induced acute pancreatitis: A new side-effect for an old drug? Acta Gastroenterol Belg. 70:32–33. 2007.PubMed/NCBI | |
Quillardet P, Arrault X, Michel V and Touati E: Organ-targeted mutagenicity of nitrofurantoin in Big Blue transgenic mice. Mutagenesis. 21:305–311. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mazzaccara C, Labruna G, Cito G, Scarfò M, De Felice M, Pastore L and Sacchetti L: Age-related reference intervals of the main biochemical and hematological parameters in C57BL/6J, 129SV/EV and C3H/HeJ mouse strains. PLoS One. 3:e37722008. View Article : Google Scholar : PubMed/NCBI | |
Cipolla BG, Havouis R and Moulinoux JP: Polyamine contents in current foods: A basis for polyamine reduced diet and a study of its long term observance and tolerance in prostate carcinoma patients. Amino Acids. 33:203–212. 2007. View Article : Google Scholar : PubMed/NCBI |