
Role of SMYD2 in gastrointestinal cancer progression (Review)
- Authors:
- Kun Xia
- Yaoxiang Zhou
- Youping Xie
- Yinzhong Cai
-
Affiliations: Department of General Surgery, People's Hospital of Ningxiang City, Ningxiang, Hunan 410600, P.R. China - Published online on: April 8, 2025 https://doi.org/10.3892/ol.2025.15028
- Article Number: 282
-
Copyright: © Xia et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Arnold M, Abnet CC, Neale RE, Vignat J, Giovannucci EL, McGlynn KA and Bray F: Global burden of 5 major types of gastrointestinal cancer. Gastroenterology. 159:335–349.e15. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang FF, Luo YH, Wang H and Zhao L: Metastasis-associated long noncoding RNAs in gastrointestinal cancer: Implications for novel biomarkers and therapeutic targets. World J Gastroenterol. 22:8735–8749. 2016. View Article : Google Scholar : PubMed/NCBI | |
Grady WM: Epigenetic alterations in the gastrointestinal tract: Current and emerging use for biomarkers of cancer. Adv Cancer Res. 151:425–468. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang DK, Zuo Q, He QY and Li B: Targeted immunotherapies in gastrointestinal cancer: From molecular mechanisms to implications. Front Immunol. 12:7059992021. View Article : Google Scholar : PubMed/NCBI | |
Cao Z, Shu Y, Wang J, Wang C, Feng T, Yang L, Shao J and Zou L: Super enhancers: Pathogenic roles and potential therapeutic targets for acute myeloid leukemia (AML). Genes Dis. 9:1466–1477. 2022. View Article : Google Scholar : PubMed/NCBI | |
Brown MA, Sims RJ III, Gottlieb PD and Tucker PW: Identification and characterization of Smyd2: A split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer. 5:262006. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T and Berger SL: Repression of p53 activity by Smyd2-mediated methylation. Nature. 444:629–632. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zeng Y, Qiu R, Yang Y, Gao T, Zheng Y, Huang W, Gao J, Zhang K, Liu R, Wang S, et al: Regulation of EZH2 by SMYD2-mediated lysine methylation is implicated in tumorigenesis. Cell Rep. 29:1482–1498.e4. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sajjad A, Novoyatleva T, Vergarajauregui S, Troidl C, Schermuly RT, Tucker HO and Engel FB: Lysine methyltransferase Smyd2 suppresses p53-dependent cardiomyocyte apoptosis. Biochim Biophys Acta. 1843:2556–2562. 2014. View Article : Google Scholar : PubMed/NCBI | |
Komatsu S, Ichikawa D, Hirajima S, Nagata H, Nishimura Y, Kawaguchi T, Miyamae M, Okajima W, Ohashi T, Konishi H, et al: Overexpression of SMYD2 contributes to malignant outcome in gastric cancer. Br J Cancer. 112:357–364. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hamamoto R, Toyokawa G, Nakakido M, Ueda K and Nakamura Y: SMYD2-dependent HSP90 methylation promotes cancer cell proliferation by regulating the chaperone complex formation. Cancer Lett. 351:126–133. 2014. View Article : Google Scholar : PubMed/NCBI | |
Reynoird N, Mazur PK, Stellfeld T, Flores NM, Lofgren SM, Carlson SM, Brambilla E, Hainaut P, Kaznowska EB, Arrowsmith CH, et al: Coordination of stress signals by the lysine methyltransferase SMYD2 promotes pancreatic cancer. Genes Dev. 30:772–785. 2016. View Article : Google Scholar : PubMed/NCBI | |
Eggert E, Hillig RC, Koehr S, Stöckigt D, Weiske J, Barak N, Mowat J, Brumby T, Christ CD, Ter Laak A, et al: Discovery and characterization of a highly potent and selective aminopyrazoline-based in vivo probe (BAY-598) for the protein lysine methyltransferase SMYD2. J Med Chem. 59:4578–4600. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hamamoto R, Saloura V and Nakamura Y: Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nat Rev Cancer. 15:110–124. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zheng Q, Zhang W and Rao GW: Protein lysine methyltransferase SMYD2: A promising small molecule target for cancer therapy. J Med Chem. 65:10119–10132. 2022. View Article : Google Scholar : PubMed/NCBI | |
Copeland RA: Protein methyltransferase inhibitors as precision cancer therapeutics: A decade of discovery. Philos Trans R Soc Lond B Biol Sci. 373:201700802018. View Article : Google Scholar : PubMed/NCBI | |
Copeland RA: Epigenetic medicinal chemistry. ACS Med Chem Lett. 7:124–127. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tang M, Chen G, Tu B, Hu Z, Huang Y, DuFort CC, Wan X, Mao Z, Liu Y, Zhu WG and Lu W: SMYD2 inhibition-mediated hypomethylation of Ku70 contributes to impaired nonhomologous end joining repair and antitumor immunity. Sci Adv. 9:eade66242023. View Article : Google Scholar : PubMed/NCBI | |
Meng J, Yang W, Li C and Li F: Synergistic anticancer effects of SMYD2 inhibitor BAY-598 and doxorubicin in non-small cell lung cancer. Heliyon. 10:e320152024. View Article : Google Scholar : PubMed/NCBI | |
Razmi M, Yazdanpanah A, Etemad-Moghadam S, Alaeddini M, Angelini S and Eini L: Clinical prognostic value of the SMYD2/3 as new epigenetic biomarkers in solid cancer patients: A systematic review and meta-analysis. Expert Rev Mol Diagn. 1–15. 2022.(Epub ahead of print). PubMed/NCBI | |
Rubio-Tomás T: Novel insights into SMYD2 and SMYD3 inhibitors: From potential anti-tumoural therapy to a variety of new applications. Mol Biol Rep. 48:7499–7508. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Yang X and Wang X: Neutrophil extracellular traps promote gastric cancer cell metastasis via the NAT10-mediated N4-acetylcytidine modification of SMYD2. Cell Signal. 116:1110142024. View Article : Google Scholar : PubMed/NCBI | |
Carr SR, Akerley W, Hashibe M and Cannon-Albright LA: Evidence for a genetical contribution to non-smoking-related lung cancer. Thorax. 70:1033–1039. 2015. View Article : Google Scholar : PubMed/NCBI | |
Spellmon N, Holcomb J, Trescott L, Sirinupong N and Yang Z: Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci. 16:1406–1428. 2015. View Article : Google Scholar : PubMed/NCBI | |
Leinhart K and Brown M: SET/MYND lysine methyltransferases regulate gene transcription and protein activity. Genes (Basel). 2:210–218. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ferguson AD, Larsen NA, Howard T, Pollard H, Green I, Grande C, Cheung T, Garcia-Arenas R, Cowen S, Wu J, et al: Structural basis of substrate methylation and inhibition of SMYD2. Structure. 19:1262–1273. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Zhong C, Zhang T and Ding J: Structure of human lysine methyltransferase Smyd2 reveals insights into the substrate divergence in Smyd proteins. J Mol Cell Biol. 3:293–300. 2011. View Article : Google Scholar : PubMed/NCBI | |
‘SMYD2-SET and MYND domain-containing protein 2’. UniProt; Geneva: 2024, https://www.uniprot.org/uniprot/Q9NRG4 | |
Herz HM, Garruss A and Shilatifard A: SET for life: Biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem Sci. 38:621–639. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Cheung T, Grande C, Ferguson AD, Zhu X, Theriault K, Code E, Birr C, Keen N and Chen H: Biochemical characterization of human SET and MYND domain-containing protein 2 methyltransferase. Biochemistry. 50:6488–6497. 2011. View Article : Google Scholar : PubMed/NCBI | |
Abu-Farha M, Lambert JP, Al-Madhoun AS, Elisma F, Skerjanc IS and Figeys D: The tale of two domains: Proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics. 7:560–572. 2008. View Article : Google Scholar : PubMed/NCBI | |
Spellmon N, Sun X, Sirinupong N, Edwards B, Li C and Yang Z: Molecular dynamics simulation reveals correlated inter-lobe motion in protein lysine methyltransferase SMYD2. PLoS One. 10:e01457582015. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Wu J, Sun B, Zhong C and Ding J: Structural and biochemical studies of human lysine methyltransferase Smyd3 reveal the important functional roles of its post-SET and TPR domains and the regulation of its activity by DNA binding. Nucleic Acids Res. 39:4438–4449. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sirinupong N, Brunzelle J, Ye J, Pirzada A, Nico L and Yang Z: Crystal structure of cardiac-specific histone methyltransferase SmyD1 reveals unusual active site architecture. J Biol Chem. 285:40635–40644. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chandramouli B and Chillemi G: Conformational dynamics of lysine methyltransferase Smyd2. insights into the different substrate crevice characteristics of Smyd2 and Smyd3. J Chem Inf Model. 56:2467–2475. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Alshammari E, Sobota J, Spellmon N, Perry E, Cao T, Mugunamalwaththa T, Smith S, Brunzelle J, Wu G, et al: Structure of the SMYD2-PARP1 complex reveals both productive and allosteric modes of peptide binding. bioRxiv [Preprint]. 2024.12.03.626679. 2024. | |
Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, Maika SD, Kuziel WA, King HL, Olson EN, et al: Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet. 31:25–32. 2002. View Article : Google Scholar : PubMed/NCBI | |
Sesé B, Barrero MJ, Fabregat MC, Sander V and Izpisua Belmonte JC: SMYD2 is induced during cell differentiation and participates in early development. Int J Dev Biol. 57:357–364. 2013. View Article : Google Scholar : PubMed/NCBI | |
Diehl F, Brown MA, van Amerongen MJ, Novoyatleva T, Wietelmann A, Harriss J, Ferrazzi F, Böttger T, Harvey RP, Tucker PW and Engel FB: Cardiac deletion of Smyd2 is dispensable for mouse heart development. PLoS One. 5:e97482010. View Article : Google Scholar : PubMed/NCBI | |
Kawamura S, Yoshigai E, Kuhara S and Tashiro K: smyd1 and smyd2 are expressed in muscle tissue in Xenopus laevis. Cytotechnology. 57:161–168. 2008. View Article : Google Scholar : PubMed/NCBI | |
Alshammari E, Zhang YX and Yang Z: Mechanistic and functional extrapolation of SET and MYND domain-containing protein 2 to pancreatic cancer. World J Gastroenterol. 28:3753–3766. 2022. View Article : Google Scholar : PubMed/NCBI | |
Boehm D, Jeng M, Camus G, Gramatica A, Schwarzer R, Johnson JR, Hull PA, Montan M, Sakane N, Pagans S, et al: SMYD2-mediated histone methylation contributes to HIV-1 latency. Cell Host Microbe. 21:569–579.e6. 2017. View Article : Google Scholar : PubMed/NCBI | |
Olsen JB, Cao XJ, Han B, Chen LH, Horvath A, Richardson TI, Campbell RM, Garcia BA and Nguyen H: Quantitative profiling of the activity of protein lysine methyltransferase SMYD2 using SILAC-based proteomics. Mol Cell Proteomics. 15:892–905. 2016. View Article : Google Scholar : PubMed/NCBI | |
Weirich S, Schuhmacher MK, Kudithipudi S, Lungu C, Ferguson AD and Jeltsch A: Analysis of the substrate specificity of the SMYD2 protein lysine methyltransferase and discovery of novel non-histone substrates. Chembiochem. 21:256–264. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li LX, Fan LX, Zhou JX, Grantham JJ, Calvet JP, Sage J and Li X: Lysine methyltransferase SMYD2 promotes cyst growth in autosomal dominant polycystic kidney disease. J Clin Invest. 127:2751–2764. 2017. View Article : Google Scholar : PubMed/NCBI | |
Piao L, Kang D, Suzuki T, Masuda A, Dohmae N, Nakamura Y and Hamamoto R: The histone methyltransferase SMYD2 methylates PARP1 and promotes poly(ADP-ribosyl)ation activity in cancer cells. Neoplasia. 16:257–264. 264.e22014. View Article : Google Scholar : PubMed/NCBI | |
Nakakido M, Deng Z, Suzuki T, Dohmae N, Nakamura Y and Hamamoto R: Dysregulation of AKT pathway by SMYD2-mediated lysine methylation on PTEN. Neoplasia. 17:367–373. 2015. View Article : Google Scholar : PubMed/NCBI | |
Saddic LA, West LE, Aslanian A, Yates JR III, Rubin SM, Gozani O and Sage J: Methylation of the retinoblastoma tumor suppressor by SMYD2. J Biol Chem. 285:37733–37740. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cho HS, Hayami S, Toyokawa G, Maejima K, Yamane Y, Suzuki T, Dohmae N, Kogure M, Kang D, Neal DE, et al: RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia. 14:476–486. 2012. View Article : Google Scholar : PubMed/NCBI | |
Obermann WMJ: A motif in HSP90 and P23 that links molecular chaperones to efficient estrogen receptor α methylation by the lysine methyltransferase SMYD2. J Biol Chem. 293:16479–16487. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ji K, Jia H, Liu Z, Yu G, Wen R, Zhang T, Peng Z, Man W, Tian Y, Wang C, et al: New insight in immunotherapy and combine therapy in colorectal cancer. Front Cell Dev Biol. 12:14536302025. View Article : Google Scholar : PubMed/NCBI | |
Meng F, Liu X, Lin C, Xu L, Liu J, Zhang P, Zhang X, Song J, Yan Y, Ren Z and Zhang Y: SMYD2 suppresses APC2 expression to activate the Wnt/β-catenin pathway and promotes epithelial-mesenchymal transition in colorectal cancer. Am J Cancer Res. 10:997–1011. 2020.PubMed/NCBI | |
Yu YQ, Thonn V, Patankar JV, Thoma OM, Waldner M, Zielinska M, Bao LL, Gonzalez-Acera M, Wallmüller S, Engel FB, et al: SMYD2 targets RIPK1 and restricts TNF-induced apoptosis and necroptosis to support colon tumor growth. Cell Death Dis. 13:522022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhou L, Xu Y, Zhou J, Jiang T, Wang J, Li C, Sun X, Song H and Song J: Targeting SMYD2 inhibits angiogenesis and increases the efficiency of apatinib by suppressing EGFL7 in colorectal cancer. Angiogenesis. 26:1–18. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lai Y and Yang Y: SMYD2 facilitates cancer cell malignancy and xenograft tumor development through ERBB2-mediated FUT4 expression in colon cancer. Mol Cell Biochem. 477:2149–2159. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ren H, Wang Z, Chen Y, Liu Y, Zhang S, Zhang T and Li Y: SMYD2-OE promotes oxaliplatin resistance in colon cancer through MDR1/P-glycoprotein via MEK/ERK/AP1 pathway. Onco Targets Ther. 12:2585–2594. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yue M, Liu T, Yan G, Luo X and Wang L: LINC01605, regulated by the EP300-SMYD2 complex, potentiates the binding between METTL3 and SPTBN2 in colorectal cancer. Cancer Cell Int. 21:5042021. View Article : Google Scholar : PubMed/NCBI | |
Pan L, Fan Y and Zhou L: SMYD2 epigenetically activates MEX3A and suppresses CDX2 in colorectal cancer cells to augment cancer growth. Clin Exp Pharmacol Physiol. 49:959–969. 2022. View Article : Google Scholar : PubMed/NCBI | |
Deng X, Hamamoto R, Vougiouklakis T, Wang R, Yoshioka Y, Suzuki T, Dohmae N, Matsuo Y, Park JH and Nakamura Y: Critical roles of SMYD2-mediated β-catenin methylation for nuclear translocation and activation of Wnt signaling. Oncotarget. 8:55837–55847. 2027. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Xu W, Qi L, Zhang Q, Sun X and Zhang S: Clinical outcome of non-curative endoscopic submucosal dissection for early gastric cancer. J Gastrointest Oncol. 15:566–576. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Xu H, You W, Pan K and Li W: Helicobacter pylori eradication for primary prevention of gastric cancer: Progresses and challenges. J Natl Cancer Cent. 4:299–310. 2024. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Liu M, Wang W, Li X, Shi E, Zhang C, Wang Y, Zhang Y, Wang L and Wang X: SMYD family members serve as potential prognostic markers and correlate with immune infiltrates in gastric cancer. J Oncol. 2023:60328642023. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Wang X, Shi E, Wang L, Nie M, Li L, Jiang Q, Kong P, Shi S, Wang C, et al: Comprehensive analysis of the value of SMYD family members in the prognosis and immune infiltration of malignant digestive system tumors. Front Genet. 12:6999102021. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Ba Z, Liu C and Yu X: Long noncoding RNA DLEU1 promotes proliferation and glycolysis of gastric cancer cells via APOC1 upregulation by recruiting SMYD2 to induce trimethylation of H3K4 modification. Transl Oncol. 36:1017312023. View Article : Google Scholar : PubMed/NCBI | |
He C, Wang Z, Yu J, Mao S and Xiang X: Current drug resistance mechanisms and treatment options in gastrointestinal stromal tumors: Summary and update. Curr Treat Options Oncol. 25:1390–1405. 2024. View Article : Google Scholar : PubMed/NCBI | |
Ji Y, Xu X, Long C, Wang J, Ding L, Zheng Z, Wu H, Yang L, Tao L and Gao F: SMYD2 aggravates gastrointestinal stromal tumor via upregulation of EZH2 and downregulation of TET1. Cell Death Discov. 8:2742022. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Qi J, Xiong J, Jiang L, Cui D, He J, Chen P, Li L, Wu C, Ma T, et al: Epigenetic co-deregulation of EZH2/TET1 is a senescence-countering, actionable vulnerability in triple-negative breast cancer. Theranostics. 9:761–777. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hwang SY, Danpanichkul P, Agopian V, Mehta N, Parikh ND, Abou-Alfa GK, Singal AG and Yang JD: Hepatocellular carcinoma: Updates on epidemiology, surveillance, diagnosis and treatment. Clin Mol Hepatol. 31 (Suppl):S228–S254. 2025. View Article : Google Scholar : PubMed/NCBI | |
Zuo SR, Zuo XC, He Y, Fang WJ, Wang CJ, Zou H, Chen P, Huang LF, Huang LH, Xiang H and Liu SK: Positive expression of SMYD2 is associated with poor prognosis in patients with primary hepatocellular carcinoma. J Cancer. 9:321–330. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fang W, Song L, Li Z, Meng P, Zuo S and Liu S: Effect of miRNA-200b on the proliferation of liver cancer cells via targeting SMYD2/p53 signaling pathway. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 47:1303–1314. 2022.(In English, Chinese). PubMed/NCBI | |
Xu K, Ding J, Zhou L, Li D, Luo J, Wang W, Shang M, Lin B, Zhou L and Zheng S: SMYD2 promotes hepatocellular carcinoma progression by reprogramming glutamine metabolism via c-Myc/GLS1 axis. Cells. 12:252022. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Guo Y, Wang L, Yin G, Tuo H, Zhu Y, Yang W, Liu Q and Wang Y: A novel hypoxia-induced lncRNA, SZT2-AS1, boosts HCC progression by mediating HIF heterodimerization and histone trimethylation under a hypoxic microenvironment. Cell Death Differ. Nov 22–2024.(Epub ahead of print). | |
Jiang Z, Zheng X, Li M and Liu M: Improving the prognosis of pancreatic cancer: Insights from epidemiology, genomic alterations, and therapeutic challenges. Front Med. 17:1135–1169. 2023. View Article : Google Scholar : PubMed/NCBI | |
Tan J, Liao S, Yuan B, Liu X, Yu W, Zhan H, Jiang Y and Liu Y: Targeting SMYD2 promotes ferroptosis and impacts the progression of pancreatic cancer through the c-Myc/NCOA4 axis-mediated ferritinophagy. Biochim Biophys Acta Gen Subj. 1868:1306832024. View Article : Google Scholar : PubMed/NCBI | |
Mancias JD, Wang X, Gygi SP, Harper JW and Kimmelman AC: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 509:105–109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Qiu J, Lu X and Li G: C-MYC inhibited ferroptosis and promoted immune evasion in ovarian cancer cells through NCOA4 mediated ferritin autophagy. Cells. 11:41272022. View Article : Google Scholar : PubMed/NCBI | |
Lenkiewicz E, Malasi S, Hogenson TL, Flores LF, Barham W, Phillips WJ, Roesler AS, Chambers KR, Rajbhandari N, Hayashi A, et al: Genomic and epigenomic landscaping defines new therapeutic targets for adenosquamous carcinoma of the pancreas. Cancer Res. 80:4324–4334. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Ye Y, Zhang Q, Wu Y, Wang G, Gui Z and Zhang M: PANoptosis-related long non-coding RNA signature to predict the prognosis and immune landscapes of pancreatic adenocarcinoma. Biochem Biophys Rep. 37:1016002023.PubMed/NCBI | |
Xu Z, Liu Y, Pan Z and Qin L: Epigenetic upregulation of MNAT1 by SMYD2 is linked to PI3K/AKT activation and tumorigenesis of pancreatic adenocarcinoma. Histol Histopathol. 39:263–277. 2024.PubMed/NCBI | |
Jin L, Qian D, Tang X, Huang Y, Zou J and Wu Z: SMYD2 imparts gemcitabine resistance to pancreatic adenocarcinoma cells by upregulating EVI2A. Mol Biotechnol. 66:2920–2933. 2024. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Zhang B, Xu J, Xue L and Wang L: Current status and perspectives of esophageal cancer: A comprehensive review. Cancer Commun (Lond). 45:281–331. 2025. View Article : Google Scholar : PubMed/NCBI | |
Komatsu S, Imoto I, Tsuda H, Kozaki KI, Muramatsu T, Shimada Y, Aiko S, Yoshizumi Y, Ichikawa D, Otsuji E and Inazawa J: Overexpression of SMYD2 relates to tumor cell proliferation and malignant outcome of esophageal squamous cell carcinoma. Carcinogenesis. 30:1139–1146. 2009. View Article : Google Scholar : PubMed/NCBI |