1
|
Lohmann JU, Endl I and Bosch TC: Silencing
of developmental genes in Hydra. Dev Biol. 214:211–214. 1999.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Yang D, Lu H and Erickson JW: Evidence
that processed small dsRNAs may mediate sequence-specific mRNA
degradation during RNAi in Drosophila embryos. Curr Biol.
10:1191–1200. 2001. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhao Z, Cao Y, Li M, et al: A
double-stranded RAN injection produces nonspecific defects in
zebrafish. Dev Biol. 229:215–223. 2001. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wianny F and Zernicka-Goetz M: Specific
interference with gene function by double-stranded RNA in early
mouse development. Nat Cell Biol. 2:70–75. 2000. View Article : Google Scholar : PubMed/NCBI
|
5
|
Fire A, Xu S, Montgomery MK, et al: Potent
and specific genetic interference by double-stranded RNA in
Caenorhabditis elegans. Nature. 391:806–811. 1998.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Quon K and Kassner PD: RNA interference
screening for the discovery of oncology targets. Expert Opin Ther
Targets. 13:1027–1035. 2009. View Article : Google Scholar : PubMed/NCBI
|
7
|
Varambally S, Dhanasekaran SM, Zhou M,
Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt
RG, Otte AP, Rubin MA and Chinnaiyan AM: The polycomb group protein
EZH2 is involved in progression of prostate cancer. Nature.
419:624–629. 2002. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rodríguez-Lebrón E, Gouvion CM, Moore SA,
Davidson BL and Paulson HL: Allele-specific RNAi mitigates
phenotypic progression in a transgenic model of Alzheimer’s
disease. Mol Ther. 17:1563–1573. 2009.PubMed/NCBI
|
9
|
Courties G, Presumey J, Duroux-Richard I,
Jorgensen C and Apparailly F: RNA interference-based gene therapy
for successful treatment of rheumatoid arthritis. Expert Opin Biol
Ther. 9:535–538. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pfister EL, Kennington L, Straubhaar J,
Wagh S, Liu W, DiFiglia M, Landwehrmeyer B, Vonsattel JP, Zamore PD
and Aronin N: Five siRNAs targeting three SNPs may provide therapy
for three-quarters of Huntington’s disease patients. Curr Biol.
19:774–778. 2009.PubMed/NCBI
|
11
|
Paddison PJ, Caudy AA and Hannon GJ:
Stable suppression of gene expression by RNAi in mammalian cells.
Proc Natl Acad Sci USA. 99:1443–1448. 2002. View Article : Google Scholar : PubMed/NCBI
|
12
|
Bridge AJ, Pebernard S, Ducraux A,
Nicoulaz AL and Iggo R: Induction of an interferon response by RNAi
vectors in mammalian cells. Nat Genet. 34:263–264. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sledz CA, Holko M, de Veer MJ, Silverman
RH and Williams BR: Activation of the interferon system by
short-interfering RNAs. Nat Cell Biol. 5:834–839. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Boulton TG, Nye SH, Robbins DJ, et al:
ERKs: a family of protein-serine/threonine kinases that are
activated and tyrosine phosphorylated in response to insulin and
NGF. Cell. 65:663–675. 1991. View Article : Google Scholar : PubMed/NCBI
|
15
|
Derijard B, Hibi M, Wu IH, et al: JNK1: a
protein kinase stimulated by UV light and Ha-Ras that binds and
phosphorylates the c-Jun activation domain. Cell. 76:1025–1037.
1994. View Article : Google Scholar : PubMed/NCBI
|
16
|
Han J, Lee JD, Bibbs L, et al: A MAP
kinase targeted by endotoxin and hyperosmolarity in mammalian
cells. Science. 265:808–811. 1994. View Article : Google Scholar : PubMed/NCBI
|
17
|
Kyriakis JM and Avruch J: Mammalian
mitogen-activated protein kinase signal transduction pathways
activated by stress and inflammation. Physiol Rev. 81:807–869.
2001.PubMed/NCBI
|
18
|
Huang C, Liu LY, Song TS, et al: Small
interfering RNA-mediated MAPK p42 silencing induces apoptosis of
HeLa cells. Nan Fang Yi Ke Da Xue Xue Bao. 26:11–15.
2006.PubMed/NCBI
|
19
|
Liu L, Huang C, Li Z, et al: Related genes
for HeLa cell apoptosis induced by siRNA-mediated MAPK p42
silencing. Acta Med Univ Sci Technol Huazhong. 37:129–132.
2008.
|
20
|
Huang C, Liu L, Li Z, et al: Effects of
small interfering RNAs targeting MAPK1 on gene expression profile
in HeLa cells as revealed by microarray analysis. Cell Biol Int.
32:1081–1090. 2008. View Article : Google Scholar : PubMed/NCBI
|
21
|
Staber PB, Linkesch W, Zauner D,
Beham-Schmid C, Guelly C, Schauer S, Sill H and Hoefler G: Common
alterations in gene expression and increased proliferation in
recurrent acute myeloid leukemia. Oncogene. 23:894–904. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Huang D, Ding Y, Luo WM, Bender S, Qian
CN, Kort E, Zhang ZF, van den Beldt K, Duesbery NS, Resau JH and
Teh BT: Inhibition of MAPK kinase signaling pathways suppressed
renal cell carcinoma growth and angiogenesis in vivo. Cancer Res.
68:81–88. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Salh B, Marotta A, Matthewson C, Ahluwalia
M, Flint J, Owen D and Pelech S: Investigation of the Mek-MAP
kinase-Rsk pathway in human breast cancer. Anticancer Res.
19:731–740. 1999.PubMed/NCBI
|
24
|
Steinmetz R, Wagoner HA, Zeng P, Hammond
JR, Hannon TS, Meyers JL and Pescovitz OH: Mechanisms regulating
the constitutive activation of the extracellular signal-regulated
kinase (ERK) signaling pathway in ovarian cancer and the effect of
ribonucleic acid interference for ERK1/2 on cancer cell
proliferation. Mol Endocrinol. 18:2570–2582. 2004. View Article : Google Scholar
|
25
|
Tamemoto H, Kadowaki T, Tobe K, Ueki K,
Izumi T, Chatani Y, Kohno M, Kasuga M, Yazaki Y and Akanuma Y:
Biphasic activation of two mitogen-activated protein kinases during
the cell cycle in mammalian cells. J Biol Chem. 267:20293–20297.
1992.PubMed/NCBI
|
26
|
Bradham C and McClay DR: p38 MAPK in
development and cancer. Cell Cycle. 5:824–828. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Parameswaran N, Nambi P, Hall CS, Brooks
DP and Spielman WS: Adrenomedullin decreases extracellular
signal-regulated kinase activity through an increase in protein
phosphatase-2A activity in mesangial cells. Eur J Pharmacol.
388:133–138. 2000. View Article : Google Scholar
|
28
|
Sen GC: Viruses and interferons. Annu Rev
Microbiol. 55:255–281. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Saunders LR and Barber GN: The dsRNA
binding protein family: critical roles, diverse cellular functions.
FASEB J. 17:961–983. 2003. View Article : Google Scholar : PubMed/NCBI
|
30
|
Hovanessian AG and Justesen J: The human
2′-5′oligoadenylate synthetase family: unique interferon-inducible
enzymes catalyzing 2′-5′ instead of 3′-5′ phosphodiester bond
formation. Biochimie. 89:779–788. 2007.
|
31
|
Boese A, Sommer P, Gaussin A, Reimann A
and Nehrbass U: Ini1/hSNF5 is dispensable for retrovirus-induced
cytoplasmic accumulation of PML and does not interfere with
integration. FEBS Lett. 578:291–296. 2004. View Article : Google Scholar : PubMed/NCBI
|
32
|
Heidel JD, Hu S, Liu XF, Triche TJ and
Davis ME: Lack of interferon response in animals to naked siRNAs.
Nat Biotechnol. 22:1579–1582. 2004. View
Article : Google Scholar : PubMed/NCBI
|
33
|
Sledz CA and Williams BR: RNA interference
and double-stranded-RNA-activated pathways. Biochem Soc Trans.
32:952–956. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lapi E, Di Agostino S, Donzelli S, Gal H,
Domany E, Rechavi G, Pandolfi PP, Givol D, Strano S, Lu X and
Blandino G: PML, YAP, and p73 are components of a proapoptotic
autoregulatory feedback loop. Mol Cell. 32:803–814. 2008.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Youlyouz-Marfak I, Gachard N, Le Clorennec
C, Najjar I, Baran-Marszak F, Reminieras L, May E, Bornkamm GW,
Fagard R and Feuillard J: Identification of a novel p53-dependent
activation pathway of STAT1 by antitumour genotoxic agents. Cell
Death Differ. 15:376–385. 2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Negoro S, Kunisada K, Tone E, et al:
Activation of JAK/STAT pathway transduces cytoprotective signal in
rat acute myocardial infarction. Cardiovasc Res. 47:797–805. 2000.
View Article : Google Scholar : PubMed/NCBI
|