1
|
Endo C, Oda M, Nishiuchi R and Seino Y:
Persistence of TEL-AML1 transcript in acute lymphoblastic leukemia
in long-term remission. Pediatr Int. 45:275–280. 2003. View Article : Google Scholar : PubMed/NCBI
|
2
|
McLean TW, Ringold S, Neuberg D, Stegmaier
K, Tantravahi R, Ritz J, Koeffler HP, Takeuchi S, Janssen JW, Seriu
T, Bartram CR, Sallan SE, Gilliland DG and Golub TR: TEL-AML1
dimerizes and is associated with a favorable outcome in childhood
acute lymphoblastic leukemia. Blood. 88:4252–4258. 1996.PubMed/NCBI
|
3
|
Holleman A, Cheok MH, den Boer ML, Yang W,
Veerman AJ, Kazemier KM, Pei D, Cheng C, Pui CH, Relling MV,
Janka-Schaub GE, Pieters R and Evans WE: Gene-expression patterns
in drug-resistant acute lymphoblastic leukemia cells and response
to treatment. N Engl J Med. 351:533–542. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Ong ST and Larson RA: Current management
of acute lymphoblastic leukemia in adults. Oncology. 9:433–442.
1995.PubMed/NCBI
|
5
|
Campana D and Pui CH: Detection of minimal
residual disease in acute leukemia: methodologic advanced and
clinical significance. Blood. 85:1416–1434. 1995.PubMed/NCBI
|
6
|
Ciudad J, San Miguel JF, López-Berges MC,
Vidriales B, Valverde B, Ocqueteau M, Mateos G, Caballero MD,
Hernández J, Moro MJ, Mateos MV and Orfao A: Prognostic value of
immunophenotypic detection of minimal residual disease in acute
lymphoblastic leukemia. J Clin Oncol. 16:3774–3781. 1998.PubMed/NCBI
|
7
|
Orfao A, Schmitz G, Brando B,
Ruiz-Arguelles A, Basso G, Braylan R, Rothe G, Lacombe F, Lanza F,
Papa S, Lucio P and San Miguel JF: Clinically useful information
provided by the flow cytometric immunophenotyping of hematological
malignancies: current status and future directions. Clin Chem.
45:1708–1717. 1999.
|
8
|
Orfao A, Ciudad J, Almeida J and San
Miguel JF: Residual disease detection of leukemia.
Immunophenotyping. Stewart CC and Nicholson JKA: Wiley-Liss; New
York: pp. 239–259. 2000
|
9
|
Tabernero MD, Bortoluci AM, Alaejos I,
López-Berges MC, Rasillo A, García-Sanz R, García M, Sayagués JM,
González M, Mateo G, San Miguel JF and Orfao A: Adult precursor
B-ALL with BCR/ABL gene rearrangements displays a unique
immunophenotype based on the pattern of CD10, CD34, CD13 and CD38
expression. Leukemia. 15:406–414. 2001. View Article : Google Scholar : PubMed/NCBI
|
10
|
Camitta BM, Pullen J and Murphy S: Biology
and treatment of acute lymphocytic leukemia in children. Oncology.
24:83–91. 1997.PubMed/NCBI
|
11
|
Martinez-Climent JA: Molecular
cytogenetics of childhood hematological malignancies. Leukemia.
11:1999–2021. 1997. View Article : Google Scholar
|
12
|
Hann I, Vora A, Harrison G, Harrison C,
Eden O, Hill F, Gibson B and Richards S: UK Medical Research
Council’s Working Party on Childhood Leukaemia: Determinants of
outcome after intensified therapy of childhood lymphoblastic
leukaemia: results from Medical Research Council United Kingdom
Acute Lymphoblastic Leukaemia XI Protocol. Br J Haematol.
113:103–114. 2001.
|
13
|
Aricò M, Valsecchi MG, Camitta B, Schrappe
M, Chessells J, Baruchel A, Gaynon P, Silverman L, Janka-Schaub G,
Kamps W, Pui CH and Masera G: Outcome of treatment in children with
Philadelphia chromosome-positive acute lymphoblastic leukemia. N
Eng J Med. 342:998–1006. 2000.
|
14
|
Schrappe M, Aricò M, Harbott J, Biondi A,
Zimmermann M, Conter V, Reiter A, Valsecchi MG, Gadner H, Basso G,
Bartram CR, Lampert F, Riehm H and Masera G: Philadelphia
chromosome-positive (Ph+) childhood acute lymphoblastic
leukemia: good initial steroid response allows early prediction of
a favorable treatment outcome. Blood. 92:2730–2741. 1998.
|
15
|
Liehr T, Heller A, Starke H, Rubtsov N,
Trifonov V, Mrasek K, Weise A, Kuechler A and Claussen U:
Microdissection-based high resolution multicolor banding for all 24
human chromosomes. Int J Mol Med. 9:335–339. 2002.PubMed/NCBI
|
16
|
Weise A, Mrasek K, Fickelscher I, Claussen
U, Cheung SW, Cai WW, Liehr T and Kosyakova N: Molecular definition
of high-resolution multicolor banding probes: first within the
human DNA sequence anchored FISH banding probe set. J Histochem
Cytochem. 56:487–493. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Mesquita DR, Córdoba JC, Magalhães IQ,
Córdoba MS, Oliveira JRC, Gonçalves A, Ferrari I and Martins-de-Sá
C: Molecular and chromosomal mutations among children with
B-lineage lymphoblastic leukemia in Brazil’s Federal District.
Genet Mol Res. 8:345–353. 2009.
|
18
|
Reaman GH, Sposto R, Sensel MG, Lange BJ,
Feusner JH, Heerema NA, Leonard M, Holmes EJ, Sather HN,
Pendergrass TW, Johnstone HS, O’Brien RT, Steinherz PG, Zeltzer PM,
Gaynon PS, Trigg ME and Uckun FM: Treatment outcome and prognostic
factors for infants with acute lymphoblastic leukemia treated on
two consecutive trials of the Children’s Cancer Group. J Clin
Oncol. 17:445–455. 1999.
|
19
|
Rowley JD: Molecular genetics in acute
leukaemia. Leukemia. 14:513–517. 2000. View Article : Google Scholar : PubMed/NCBI
|
20
|
Sánchez-García I and Grütz G: The
tumorigenic activity of the BCR-ABL oncogenes is mediated by BCL-2.
Proc Natl Acad Sci USA. 92:5287–5291. 1995.
|
21
|
Rieder H, Bonwetsch C, Janssen LA, Maurer
J, Janssen JW, Schwartz S, Ludwig WD, Gassman W, Bartram CR, Thiel
E, Loffler H, Gokbuget N, Hollzer D and Fonatsch C: High rate of
chromosome abnormalities detected by fluorescence in situ
hybridization using BCR and ABL probes in adult acute lymphoblastic
leukemia. Leukemia. 12:1473–1481. 1998. View Article : Google Scholar : PubMed/NCBI
|
22
|
Copelan EA and McGuire EA: The biology and
treatment of acute lymphoblastic leukemia in adults. Blood.
85:1151–1168. 1995.PubMed/NCBI
|
23
|
Secker-Walker LM, Craig JM, Hawkins JM and
Hoffbrand AV: Philadelphia positive acute lymphoblastic leukaemia
in adults – age distribution, BCR breakpoint and prognostic
significance. Leukemia. 5:196–199. 1991.
|
24
|
Annino L, Ferrari A, Cedrone M, Giona F,
Lo Coco F, Meloni G, Arcese W and Mandelli F: Adult
Philadelphia-chromosome-positive acute lymphoblastic leukaemia:
experience of treatments during a 10-year period. Leukemia.
8:664–667. 1994.
|
25
|
Secker-Walker LM, Pentrice HG, Durrant J,
Richards S, Hall E and Harrison G: Cytogenetics adds independent
prognostic information in adults with acute lymphoblastic leukaemia
on MRC trial UKALL XA. Br J Haematol. 96:601–610. 1997. View Article : Google Scholar : PubMed/NCBI
|
26
|
Pui CH, Crist WM and Look T: Biology and
clinical significance of cytogenetic abnormalities in childhood
acute lymphoblastic leukaemia. Blood. 76:1449–1463. 1990.PubMed/NCBI
|
27
|
Pui CH and Evans WE: Acute lymphoblastic
leukemia. N Engl J Med. 339:605–615. 1998. View Article : Google Scholar : PubMed/NCBI
|
28
|
Lugthart S, Cheok MH, den Boer ML, Yang W,
Holleman A, Cheng C, Pui CH, Relling MV, Janka-Schaub GE, Pieters R
and Evans WE: Identification of genes associated with chemotherapy
crossresistance and treatment response in childhood acute
lymphoblastic leukemia. Cancer Cell. 7:375–386. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Holleman A, den Boer ML, de Menezes RX,
Cheok MH, Cheng C, Kazemier KM, Janka-Schaub GE, Göbel U, Graubner
UB, Evans WE and Pieters R: The expression of 70 apoptosis genes in
relation to lineage, genetic subtype, cellular drug resistance, and
outcome in childhood acute lymphoblastic leukemia. Blood.
107:769–776. 2006. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nyvold C, Madsen HO, Ryder LP, Seyfarth J,
Svejgaard A, Clausen N, Wesenberg F, Jonsson OG, Forestier E and
Schmiegelow K; Nordic Society for Pediatric Hematology and
Oncology. Precise quantification of minimal residual disease at day
29 allows identification of children with acute lymphoblastic
leukemia and an excellent outcome. Blood. 99:1253–1258. 2002.
View Article : Google Scholar
|
31
|
Lal A, Kwan E, Haber M, Norris MD and
Marshall GM: Detection of minimal residual disease in peripheral
blood prior to clinical relapse of childhood acute lymphoblastic
leukaemia using PCR. Mol Cell Probes. 15:99–103. 2001. View Article : Google Scholar : PubMed/NCBI
|