miRNAs in breast cancer tumorigenesis (Review)
- Authors:
- Zhong Ju Zhang
- Shi Liang Ma
-
Affiliations: College of Biological Science and Biotechnology, Shenyang Agricultural University, Shenyang 110866, P.R. China, College of Biological Science and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, P.R. China - Published online on: December 23, 2011 https://doi.org/10.3892/or.2011.1611
- Pages: 903-910
This article is mentioned in:
Abstract
Lee R, Feinbaum R and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. | |
Reinhart BJ, Slack FJ, Basson M, et al: The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature. 403:901–906. 2000. View Article : Google Scholar : PubMed/NCBI | |
Lagos-Quintana M, Rauhut R, Lendeckel W and Tuschl T: Identification of novel genes coding for small expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lau NC, Lim LP, Weinstein EG and Bartel DP: An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 294:858–862. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vetter G, Saumet A, Moes M, et al: miR-661 expression in SNAI1-induced epithelial to mesenchymal transition contributes to breast cancer cell invasion by targeting Nectin-1 and StarD10 messengers. Oncogene. 29:4436–4448. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ambros V: MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell. 113:673–676. 2003. View Article : Google Scholar : PubMed/NCBI | |
Palatnik JF, Allen E, Wu X, et al: Control of leaf morphogenesis by microRNAs. Nature. 425:257–263. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW and Ruohola-Baker H: Stem cell division is regulated by the microRNA pathway. Nature. 435:974–978. 2005. View Article : Google Scholar : PubMed/NCBI | |
O’Donnell KA, Wentzel EA, Zeller KI, Dang CV and Mendell JT: c-Myc-regulated microRNAs modulate E2F1 expression. Nature. 435:839–843. 2005.PubMed/NCBI | |
Ambros V: The functions of animal microRNAs. Nature. 431:350–355. 2004. View Article : Google Scholar : PubMed/NCBI | |
Tong AW and Nemunaitis J: Modulation of miRNA activity in human cancer: a new paradigm for cancer gene therapy? Cancer Gene Ther. 15:341–355. 2008. View Article : Google Scholar : PubMed/NCBI | |
Croce CM and Calin GA: miRNAs, cancer, and stem cell division. Cell. 122:6–7. 2005. View Article : Google Scholar : PubMed/NCBI | |
Calin G, Dumitru C, Shimizu M, et al: Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI | |
Iorio MV, Ferracin M, Liu CG, et al: MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65:7065–7070. 2005. View Article : Google Scholar : PubMed/NCBI | |
Al-Hajj M: Cancer stem cells and oncology therapeutics. Curr Opin Oncol. 19:61–64. 2007.PubMed/NCBI | |
Al-Hajj M and Clarke MF: Self-renewal and solid tumor stem cells. Oncogene. 23:7274–7282. 2004. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Dontu G, Mantle ID, et al: Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 66:6063–6071. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dimri GP, Martinez JL, Jacobs JJL, et al: The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res. 62:4736–4745. 2002.PubMed/NCBI | |
Shimono Y, Zabala M, Cho RW, et al: Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell. 138:592–603. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Yao H, Zhu P, et al: let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 131:1109–1123. 2007. View Article : Google Scholar : PubMed/NCBI | |
Yu F, Deng H, Yao H, Liu Q, Su F and Song E: Mir-30 reduction maintains self-renewal and inhibits apoptosis in breast tumor-initiating cells. Oncogene. 29:4194–4204. 2010. View Article : Google Scholar : PubMed/NCBI | |
Müller S, Hoege C, Pyrowolakis G and Jentsch S: SUMO, ubiquitin’s mysterious cousin. Nat Rev Mol Cell Biol. 2:202–213. 2001. | |
Park SW, Hu X, Gupta P, Lin YP, Ha SG and Wei LN: SUMOylation of Tr2 orphan receptor involves Pml and fine-tunes Oct4 expression in stem cells. Nat Struct Mol Biol. 14:68–75. 2006. View Article : Google Scholar : PubMed/NCBI | |
Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM and Cheresh DA: Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins. J Cell Biol. 155:459–470. 2001. View Article : Google Scholar : PubMed/NCBI | |
Pontier SM and Muller WJ: Integrins in mammary-stem-cell biology and breast-cancer progression - a role in cancer stem cells? J Cell Sci. 122:207–214. 2009. View Article : Google Scholar : PubMed/NCBI | |
Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hengartner MO: The biochemistry of apoptosis. Nature. 407:770–776. 2000. View Article : Google Scholar : PubMed/NCBI | |
Liu CA, Wang MJ, Chi CW, Wu CW and Chen JY: Rho/Rhotekin-mediated NF-kappaB activation confers resistance to apoptosis. Oncogene. 23:8731–8742. 2004. View Article : Google Scholar : PubMed/NCBI | |
Raver-Shapira N, Marciano E, Meiri E, et al: Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 26:731–743. 2007. View Article : Google Scholar : PubMed/NCBI | |
Antonsson B and Martinou JC: The Bcl-2 protein family. Exp Cell Res. 256:50–57. 2000. View Article : Google Scholar | |
Cimmino A, Calin G, Fabbri M, et al: miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI | |
Si ML, Zhu S, Wu H, Lu Z, Wu F and Mo YY: miR-21-mediated tumor growth. Oncogene. 26:2799–2803. 2006. | |
Chan J, Krichevsky A and Kosik K: MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 65:6029–6033. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Bian C, Yang Z, et al: miR-145 inhibits breast cancer cell growth through RTKN. Int J Oncol. 34:1461–1466. 2009.PubMed/NCBI | |
Kong W, He L, Coppola M, et al: MicroRNA-155 regulates cell survival, growth, and chemosensitivity by targeting FOXO3a in breast cancer. J Biol Chem. 285:17869–17879. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sunters A, Fernández de Mattos S, Stahl M, et al: FoxO3a transcriptional regulation of Bim controls apoptosis in paclitaxel-treated breast cancer cell lines. J Biol Chem. 278:49795–49805. 2003. View Article : Google Scholar : PubMed/NCBI | |
Le MT, Teh C, Shyh-Chang N, et al: MicroRNA-125b is a novel negative regulator of p53. Genes Dev. 23:862–876. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kato M, Paranjape T, Ullrich R, et al: The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene. 28:2419–2424. 2009. View Article : Google Scholar : PubMed/NCBI | |
Evan GI and Vousden KH: Proliferation, cell cycle and apoptosis in cancer. Nature. 411:342–348. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fu M: Minireview: cyclin D1: normal and abnormal functions. Endocrinology. 145:5439–5447. 2004. View Article : Google Scholar : PubMed/NCBI | |
Yu Z, Wang C, Wang M, et al: A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol. 182:509–517. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mertens-Talcott SU, Chintharlapalli S, Li X and Safe S: The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res. 67:11001–11011. 2007. View Article : Google Scholar | |
Hossain A, Kuo MT and Saunders GF: Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol. 26:8191–8201. 2006. View Article : Google Scholar : PubMed/NCBI | |
Brosh R, Shalgi R, Liran A, et al: p53-Repressed miRNAs are involved with E2F in a feed-forward loop promoting proliferation. Mol Syst Biol. 4:2292008. View Article : Google Scholar : PubMed/NCBI | |
Castro-Rivera E, Samudio I and Safe S: Estrogen regulation of cyclin D1 gene expression in ZR-75 breast cancer cells involves multiple enhancer elements. J Biol Chem. 276:30853–30861. 2001. View Article : Google Scholar : PubMed/NCBI | |
Adams BD, Furneaux H and White BA: The micro-ribonucleic acid (miRNA) miR-206 targets the human estrogen receptor-(ER) and represses ER messenger RNA and protein expression in breast cancer cell lines. Mol Endocrinol. 21:1132–1147. 2007. View Article : Google Scholar : PubMed/NCBI | |
Leivonen SK, Makela R, Ostling P, et al: Protein lysate microarray analysis to identify microRNAs regulating estrogen receptor signaling in breast cancer cell lines. Oncogene. 28:3926–3936. 2009. View Article : Google Scholar | |
Zhao JJ, Lin J, Yang H, et al: MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem. 283:31079–31086. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bhat-Nakshatri P, Wang G, Collins NR, et al: Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res. 37:4850–4861. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wickramasinghe NS, Manavalan TT, Dougherty SM, Riggs KA, Li Y and Klinge CM: Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res. 37:2584–2595. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gupta GP and Massague J: Cancer metastasis: building a framework. Cell. 127:679–695. 2006. View Article : Google Scholar : PubMed/NCBI | |
Huang Q, Gumireddy K, Schrier M, et al: The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 10:202–210. 2008. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P and Jain RK: Angiogenesis in cancer and other diseases. Nature. 407:249–257. 2000. View Article : Google Scholar : PubMed/NCBI | |
Vincent-Salomon A and Thiery JP: Epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res. 5:101–106. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tryndyak VP, Beland FA and Pogribny IP: E-cadherin transcriptional down-regulation by epigenetic and microRNA-200 family alterations is related to mesenchymal and drug-resistant phenotypes in human breast cancer cells. Int J Cancer. 126:2575–2583. 2010.PubMed/NCBI | |
Ma L, Young J, Prabhala H, et al: miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 12:247–256. 2010.PubMed/NCBI | |
Blagosklonny MV, Dykxhoorn DM, Wu Y, et al: miR-200 enhances mouse breast cancer cell colonization to form distant metastases. PLoS One. 4:e71812009. View Article : Google Scholar : PubMed/NCBI | |
Gregory PA, Bert AG, Paterson EL, et al: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol. 10:593–601. 2008. View Article : Google Scholar : PubMed/NCBI | |
Valastyan S, Reinhardt F, Benaich N, et al: A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 137:1032–1046. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kong W, Yang H, He L, et al: MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol. 28:6773–6784. 2008. View Article : Google Scholar : PubMed/NCBI | |
Baker AH, George SJ, Zaltsman AB, Murphy G and Newby AC: Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br J Cancer. 79:1347–1355. 1999. View Article : Google Scholar : PubMed/NCBI | |
Bode W, Reinemer P, Huber R, Kleine T, Schnierer S and Tschesche H: The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 13:1263–1269. 1994.PubMed/NCBI | |
Gabriely G, Wurdinger T, Kesari S, et al: MicroRNA 21 promotes glioma invasion by targeting matrix metalloproteinase regulators. Mol Cell Biol. 28:5369–5380. 2008. View Article : Google Scholar : PubMed/NCBI | |
Selaru FM, Olaru AV, Kan T, et al: MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3. Hepatology. 49:1595–1601. 2009. View Article : Google Scholar : PubMed/NCBI | |
Song B, Wang C, Liu J, et al: MicroRNA-21 regulates breast cancer invasion partly by targeting tissue inhibitor of metalloproteinase 3 expression. J Exp Clin Cancer Res. 29:292010. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Wu H, Wu F, Nie D, Sheng S and Mo YY: MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 18:350–359. 2008. View Article : Google Scholar : PubMed/NCBI | |
Perry SV: Vertebrate tropomyosin: distribution, properties and function. J Muscle Res Cell Motil. 22:5–49. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hall A: Rho GTPases and the actin cytoskeleton. Science. 279:509–514. 1998. View Article : Google Scholar | |
Varga AE, Stourman NV, Zheng Q, et al: Silencing of the Tropomyosin-1 gene by DNA methylation alters tumor suppressor function of TGF-beta. Oncogene. 24:5043–5052. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lu Z, Liu M, Stribinskis V, et al: MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene. 27:4373–4379. 2008. View Article : Google Scholar : PubMed/NCBI | |
Asangani IA, Rasheed SAK, Nikolova DA, et al: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene. 27:2128–2136. 2007. View Article : Google Scholar | |
Yang HS, Matthews CP, Clair T, et al: Tumorigenesis suppressor Pdcd4 down-regulates mitogen-activated protein kinase kinase kinase kinase 1 expression to suppress colon carcinoma cell invasion. Mol Cell Biol. 26:1297–1306. 2006. View Article : Google Scholar : PubMed/NCBI | |
Benbow U and Brinckerhoff CE: The AP-1 site and MMP gene regulation: what is all the fuss about? Matrix Biol. 15:519–526. 1997. View Article : Google Scholar : PubMed/NCBI | |
Murai T, Maruyama Y, Mio K, Nishiyama H, Suga M and Sato C: Low cholesterol triggers membrane microdomain-dependent CD44 shedding and suppresses tumor cell migration. J Biol Chem. 286:1999–2007. 2011. View Article : Google Scholar : PubMed/NCBI | |
Lesley J, Hyman R and Kincade PW: CD44 and its interaction with extracellular matrix. Adv Immunol. 54:271–335. 1993. View Article : Google Scholar : PubMed/NCBI | |
Tavazoie S, Alarcón C, Oskarsson T, et al: Endogenous human microRNAs that suppress breast cancer metastasis. Nature. 451:147–152. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hakem A: RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev. 19:1974–1979. 2005. View Article : Google Scholar : PubMed/NCBI | |
Clark E, Golub T, Lander E and Hynes R: Genomic analysis of metastasis reveals an essential role for RhoC. Nature. 406:532–535. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ma L, Teruya-Feldstein J and Weinberg RA: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 449:682–688. 2007. View Article : Google Scholar : PubMed/NCBI | |
Myers C, Charboneau A, Cheung I, Hanks D and Boudreau N: Sustained expression of homeobox D10 inhibits angiogenesis. A J Pathol. 161:2099–2109. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lehtonen ST, Svensk A-M, Soini Y, et al: Peroxiredoxins, a novel protein family in lung cancer. Int J Cancer. 111:514–521. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chang XZ, Li DQ, Hou YF, et al: Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer. Breast Cancer Res. 9:R762007. View Article : Google Scholar : PubMed/NCBI | |
Kümin A, Huber C, Rülicke T, Wolf E and Werner S: Peroxiredoxin 6 is a potent cytoprotective enzyme in the epidermis. Am J Pathol. 169:1194–1205. 2006.PubMed/NCBI | |
Chang XZ, Li DQ, Hou YF, et al: Identification of the functional role of peroxiredoxin 6 in the progression of breast cancer. Breast Cancer Res. 9:R762007. View Article : Google Scholar : PubMed/NCBI | |
Suarez Y and Sessa WC: MicroRNAs as novel regulators of angiogenesis. Circ Res. 104:442–454. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhu N, Zhang D, Xie H, et al: Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2. Mol Cell Biochem. 351:157–164. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gerber HP, McMurtrey A, Kowalski J, et al: Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-Kinase/Akt signal transduction pathway. J Biol Chem. 273:30336–30343. 1998. | |
Iva N and Karl-Heinz P: EGFL7 meets miRNA-126: an angiogenesis alliance. J Angiogenes Res. 2:92010. View Article : Google Scholar : PubMed/NCBI | |
Fish JE, Santoro MM, Morton SU, et al: miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell. 15:272–284. 2008. View Article : Google Scholar : PubMed/NCBI | |
Boudreau N and Myers C: Breast cancer-induced angiogenesis: multiple mechanisms and the role of the microenvironment. Breast Cancer Res. 5:140–146. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cascio S, D’Andrea A, Ferla R, et al: miR-20b modulates VEGF expression by targeting HIF-1α and STAT3 in MCF-7 breast cancer cells. J Cell Physiol. 224:242–249. 2010.PubMed/NCBI | |
Bos R, Zhong H, Hanrahan CF, et al: Levels of hypoxia-inducible factor-1α during breast carcinogenesis. J Natl Cancer Inst. 93:3092001. | |
Krek A, Grun D, Poy MN, et al: Combinatorial microRNA target predictions. Nature Genet. 37:495–500. 2005. View Article : Google Scholar |