1
|
Fiocchi C: Inflammatory bowel disease:
etiology and pathogenesis. Gastroenterology. 115:182–205. 1998.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Bernstein CN, Blanchard JF, Kliewer E and
Wajda A: Cancer risk in patients with inflammatory bowel disease: a
population-based study. Cancer. 91:854–862. 2001. View Article : Google Scholar : PubMed/NCBI
|
3
|
Elson CO, Sartor RB, Tennyson GS and
Riddell RH: Experimental models of inflammatory bowel disease.
Gastroenterology. 109:1344–1367. 1995. View Article : Google Scholar : PubMed/NCBI
|
4
|
Watt J and Marcus R: Ulceration of the
colon in rabbits fed sulfated amylopectin. J Pharm Pharmacol.
24:68–69. 1972. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ricketts CR: Dextran sulphate-a synthetic
analogue of heparin. Biochem J. 51:129–133. 1952.PubMed/NCBI
|
6
|
Tanaka T, Kohno H, Suzuki R, Yamada Y,
Sugie S and Mori H: A novel inflammation-related mouse colon
carcinogenesis model induced by azoxymethane and dextran sodium
sulfate. Cancer Sci. 94:965–973. 2003. View Article : Google Scholar : PubMed/NCBI
|
7
|
Suzuki R, Kohno H, Sugie S and Tanaka T:
Sequential observations on the occurrence of preneoplastic and
neoplastic lesions in mouse colon treated with azoxymethane and
dextran sodium sulfate. Cancer Sci. 95:721–727. 2004. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yamada M, Ohkusa T and Okayasu I:
Occurrence of dysplasia and adenocarcinoma after experimental
chronic ulcerative colitis in hamsters induced by dextran sulphate
sodium. Gut. 33:1521–1527. 1992. View Article : Google Scholar : PubMed/NCBI
|
9
|
Okayasu I, Hatakeyama S, Yamada M, Ohkusa
T, Inagaki Y and Nakaya R: A novel method in the induction of
reliable experimental acute and chronic ulcerative colitis in mice.
Gastroenterology. 98:694–702. 1990.PubMed/NCBI
|
10
|
Araki Y, Andoh A, Fujiyama Y, Hata K,
Makino J, Okuno T, Nakanura F and Bamba T: Application of
2-aminopyridine fluorescence labeling in the analysis of in vivo
and in vitro metabolism of dextran sulfate sodium by size-exclusion
high-performance liquid chromatography. J Chromatogr B Biomed Sci
Appl. 753:209–215. 2001. View Article : Google Scholar
|
11
|
Arak Y, Andoh A, Fujiyama Y, Hata K,
Makino J, Shimada M, Bamba H, Okuno T, Urushiyama N and Bamba T:
Analysis of α-amylase-derived pyridylamino-dextran sulfate
oligomers by the combination of size-exclusion and reversed-phase
high-performance liquid chromatography. J Chromatogr B Analyt
Technol Biomed Life Sci. 766:351–356. 2002.
|
12
|
Araki Y, Kanauchi O, Sugihara H, Fujiyama
Y and Hattori T: Germinated barley foodstuff suppresses dextran
sulfate experimental colitis in rats: the role of mast cells. Int J
Mol Med. 19:257–262. 2007.PubMed/NCBI
|
13
|
Araki Y, Mukaisyo K, Sugihara H and
Hattori T: Decomposition of dextran sulfate sodium under alkaline,
acidic, high temperature and high pressure conditions. Oncol Rep.
20:147–149. 2008.PubMed/NCBI
|
14
|
Hidalgo IJ, Raub TJ and Borchardt RT:
Characterization of human colon carcinoma cell line (Caco-2) as a
model system of intestinal epithelial permeability.
Gastroenterology. 96:736–749. 1989.PubMed/NCBI
|
15
|
Araki Y, Katoh T, Ogawa A, Bamba S, Andoh
A, Koyama S, Fujiyama Y and Bamba T: Bile acid modulates
transepithelial permeability via the generation of reactive oxygen
species in the Caco-2 cell line. Free Radic Biol Med. 39:769–780.
2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Araki Y, Sugihara H and Hattori T: In
vitro effects of dextran sulfate sodium on a Caco-2 cell line and
plausible mechanisms for dextran sulfate sodium-induced colitis.
Oncol Rep. 16:1357–1362. 2006.PubMed/NCBI
|
17
|
Kitajima S, Takuma S and Morimoto M:
Histological analysis of murine colitis induced by dextran sulfate
sodium of different molecular weights. Exp Anim. 49:9–15. 2000.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Hoshi O, Iwanaga T and Fujino MA:
Selective uptake of intraluminal dextran sulfate sodium and senna
by macrophages in the cecal mucosa of the guinea pig. J
Gastroenterol. 31:189–198. 1996. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hiebert LM, Wice SM, Jaques LB, Williams
KE and Conly JM: Orally administered dextran sulfate is absorbed in
HIV-positive individuals. J Lab Clin Med. 133:161–170. 1999.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Burg DL, Harrison ML and Geahlen RL: Cell
cycle-specific activation of the PTK72 protein-tyrosine kinase in B
lymphocytes. J Biol Chem. 68:2304–2306. 1993.PubMed/NCBI
|
21
|
Umemura K, Yanase K, Suzuki M, Okutani K,
Yamori T and Andoh T: Inhibition of DNA topoisomerases I and II,
and growth inhibition of human cancer cell lines by a marine
microalgal polysaccharide. Biochem Pharmacol. 66:481–487. 2003.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Furukawa K and Bhavanandan VP: Influences
of anionic polysaccharides on DNA synthesis in isolated nuclei and
by DNA polymerase alpha: correlation of observed effects with
properties of the polysaccharides. Biochim Biophys Acta.
740:466–475. 1983. View Article : Google Scholar
|
23
|
Vetuschi A, Latella G, Sferra R, Caprilli
R and Gaudio E: Increased proliferation and apoptosis of colonic
epithelial cells in dextran sulfate sodium-induced colitis in rats.
Dig Dis Sci. 47:1447–1457. 2002. View Article : Google Scholar : PubMed/NCBI
|
24
|
Cooper HS, Murthy SN, Shah RS and
Sedergran DJ: Clinicopathologic study of dextran sulfate sodium
experimental murine colitis. Lab Invest. 69:238–249. 1993.
|
25
|
Dieleman LA, Ridwan BU, Tennyson GS,
Beagley KW, Bucy RP and Elson CO: Dextran sulfate sodium-induced
colitis occurs in severe combined immunodeficient mice.
Gastroenterology. 107:1643–1652. 1994.
|
26
|
Ni J, Chen SF and Hollander D: Effects of
dextran sulfate sodium on intestinal epithelial cells and
intestinal lymphocytes. Gut. 39:234–241. 1996. View Article : Google Scholar
|
27
|
Yoshino T, Nakase H, Honzawa Y, Matsumura
K, Yamamoto S, Takeda Y, Ueno S, Uza N, Masuda S, Inui K and Chiba
T: Immunosuppressive effects of tacrolimus on macrophages
ameliorate experimental colitis. Inflamm Bowel Dis. 16:2022–2033.
2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhao J, de Vera J, Narushima S, Beck EX,
Palencia S, Shinkawa P, Kim KA, Liu Y, Levy MD, Berg DJ, Abo A and
Funk WD: R-spondin1, a novel intestinotrophic mitogen, ameliorates
experimental colitis in mice. Gastroenterology. 132:1331–1343.
2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Egger B, Carey HV, Procaccino F, Chai NN,
Sandgren EP, Lakshmanan J, Buslon VS, French SW, Büchler MW and
Eysselein VE: Reduced susceptibility of mice overexpressing
transforming growth factor alpha to dextran sodium sulfate induced
colitis. Gut. 43:64–70. 1998. View Article : Google Scholar : PubMed/NCBI
|
30
|
Williams KL, Fuller CR, Dieleman LA,
DaCosta CM, Haldeman KM, Sartor RB and Lund PK: Enhanced survival
and mucosal repair after dextran sodium sulfate-induced colitis in
transgenic mice that overexpress growth hormone. Gastroenterology.
120:925–937. 2001. View Article : Google Scholar : PubMed/NCBI
|
31
|
Tessner TG, Cohn SM, Schloemann S and
Stenson WF: Prostaglandins prevent decreased epithelial cell
proliferation associated with dextran sodium sulfate injury in
mice. Gastroenterology. 115:874–882. 1998. View Article : Google Scholar : PubMed/NCBI
|
32
|
Lepique AP, Moraes MS, Rocha KM and
Eichler CB: c-Myc protein is stabilized by fibroblast growth factor
2 and destabilized by ACTH to control cell cycle in mouse Y1
adrenocortical cells. J Mol Endocrinol. 33:623–638. 2004.
View Article : Google Scholar
|
33
|
Slominski A, Zbytek B, Pisarchik A,
Slominski RM, Zmijewski MA and Wortsman J: CRH functions as a
growth factor/cytokine in the skin. J Cell Physiol. 206:780–791.
2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Watt J and Marcus R: Carrageenan induced
ulceration of the large intestine in the guinea pig. Gut.
12:164–171. 1991. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ling KY, Bhalla D and Hollander D:
Mechanisms of carrageenan injury of IEC18 small intestinal
epithelial cell monolayers. Gastroenterology. 95:1487–1495.
1988.PubMed/NCBI
|
36
|
Vowinkel T, Kalogeris TJ, Mori M,
Krieglstein CF and Granger DN: Impact of dextran sulfate sodium
load on the severity of inflammation in experimental colitis. Dig
Dis Sci. 49:556–564. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
McLean MW and Williamson FB:
kappa-Carrageenase from Pseudomonas carrageenovora. Eur J Biochem.
93:553–558. 1979. View Article : Google Scholar : PubMed/NCBI
|
38
|
Araki Y, Mukaisho K, Sugihara H, Fujiyama
Y and Hattori T: Proteus mirabilis sp intestinal microflora
grow in a dextran sulfate sodium-rich environment. Int J Mol Med.
25:203–208. 2010.
|