1
|
Kosacka M, Piesiak P, Porebska I, et al:
The cyclin A, B1, D1, and E expression in advanced non-small cell
lung cancer - stages IIIB-IV (preliminary report). Pol Merkur
Lekarski. 30:253–258. 2011.(in Polish).
|
2
|
Chen RW, Bemis LT, Amato CM, et al:
Truncation in CCND1 mRNA alters miR-16-1 regulation in mantel cell
lymphoma. Blood. 112:822–829. 2008. View Article : Google Scholar : PubMed/NCBI
|
3
|
Miska EA: How microRNAs control cell
division, diffentiation and death. Curr Opin Genet Dev. 15:563–568.
2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Carè A, Catalucci D, Felicetti F, et al:
MicroRNA-133 controls cardiac hypertrophy. Nat Med. 13:613–618.
2007.
|
6
|
Bandi N, Zbinden S, Gugger M, et al:
miR-15a and miR-16-1 are implicated in cell cycle regulation in a
Rb-dependent manner and are frequently deleted or down-regulated in
non-small cell lung cancer. Cancer Res. 69:5553–5559. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Tsang WP and Kwok TT: Epigallocatechin
gallate up-regulation of miR-16 and induction of apoptosis in human
cancer cells. J Nutr Biochem. 21:140–146. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Guo CJ, Pan Q, Jiang B, Chen GY and Li DG:
Effects of upregulated expression of microRNA-16 on biological
properties of culture-activated hepatic stellate cells. Apoptosis.
14:1331–1340. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xu F, Zhang X, Lei Y, et al: Loss of
repression of HuR translation by miR-16 may be responsible for the
elevation of HuR in human breast carcinoma. J Cell Biochem.
111:727–734. 2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Bhattacharya R, Nicoloso M, Arvizo R, et
al: MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer.
Cancer Res. 69:9090–9095. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Bonci D, Coppola V, Musumeci M, et al: The
miR-15a-miR-16-1 cluster controls prostate cancer by targeting
multiple oncogenic activities. Nat Med. 14:1271–1277. 2008.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Xia L, Zhang DX, Du R, et al: miR-15b and
miR-16-1 modulate multidrug resistance by targeting BCL2 in human
gastric cancer cells. Int J Cancer. 123:372–379. 2008. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bottoni A, Piccin D, Tagliati F, et al:
miR-15a and miR-16-1 down-regulation in pituitary adenomas. J Cell
Physiol. 204:280–285. 2005. View Article : Google Scholar : PubMed/NCBI
|
14
|
Nedelcu T, Kubista B, Koller A, et al:
Livin and Bcl-2 expression in high-grade osteosarcoma. J Cancer Res
Clin Oncol. 134:237–244. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gao J, Yang TT, Qiu XC, et al: Cloning and
identification of microRNA from human osteosarcoma cell line
SOSP-9607. Ai Zheng. 26:561–565. 2007.(In Chinese).
|
16
|
Tsang TY, Tang WY, Chan JY, et al:
P-glycoprotein enhances radiation-induced apoptotic cell death
through the regulation of miR-16 and Bcl-2 expressions in
hepatocellar carcinoma cells. Apoptosis. 16:524–535. 2011.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Cimmino A, Calin GA, Fabbri M, et al:
miR-15 and miR-16 induce apoptosis by targeting BCL-2. Proc Natl
Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lerner M, Harada M, Lovén J, et al: DLEU2,
frequently deleted in malignancy, functions as a critical host gene
of the cell cycle inhibitory microRNAs miR-15a and miR-16-1. Exp
Cell Res. 315:2941–2952. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
Shan LQ, Ma S, Qiu XC, et al: A novel
recombinant immune-tBid with a furin site effectively suppresses
the growth of HER2-positive osteosarcoma cells in vitro.
Oncol Rep. 25:325–331. 2011.PubMed/NCBI
|
20
|
Wang LF, Zhou Y, Xu YM, et al: A caspase-6
and anti-HER2 antibody chimeric tumor-targeted proapoptotic
molecule decreased metastasis of human osteosarcoma. Cancer Invest.
27:774–780. 2009. View Article : Google Scholar : PubMed/NCBI
|
21
|
Chen X, Yang TT, Wang W, et al:
Establishment and characterization of human osteosarcoma cell lines
with different pulmonary metastatic potentials. Cytotechnology.
61:37–44. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Sherr CJ: D-type cyclins. Trends Biochem
Sci. 20:187–190. 1995. View Article : Google Scholar
|
23
|
Motokura T, Bloom T, Kim HG, et al: A
novel cyclin encoded by a bell-linked candidate oncogene. Nature.
350:512–515. 1991. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Liu Q, Fu H, Sun F, et al: miR-16-1 family
induces cell cycle arrest by regulating multiple cell cycle genes.
Nucleic Acids Res. 36:5391–5404. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Iaquinta PJ and Lees JA: Life and death
decisions by the E2F transcription factors. Curr Opin Cell Biol.
19:649–657. 2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Wu X and Levine AJ: p53 and E2F-1
cooperate to mediate apoptosis. Proc Natl Acad Sci USA.
91:3602–3606. 1994. View Article : Google Scholar : PubMed/NCBI
|
27
|
Han EK, Ng SC, Arber N, Begemann M and
Weinstein IB: Roles of cyclin D1 and related genes in growth
inhibition, senescence and apoptosis. Apoptosis. 4:213–219. 1999.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Moroni MC, Hickman ES, Lazzerini Denchi E,
et al: Apaf-1 is a transcriptional target for E2F and p53. Nat Cell
Biol. 3:552–558. 2001. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Han J, Flemington C, Houghton AB, et al:
Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by
diverse cell death and survival signals. Proc Natl Acad Sci USA.
98:11318–11323. 2001. View Article : Google Scholar : PubMed/NCBI
|
30
|
Nakano K and Vousden KH: PUMA, a novel
proapoptotic gene, is induced by p53. Mol Cell. 7:683–694. 2001.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Oda E, Ohki R, Murasawa H, et al: Noxa, a
BH3-only member of the Bcl-2 family and candidate mediator of
p53-induced apoptosis. Science. 288:1053–1058. 2000. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fortin A, MacLaurin JG, Arbour N, et al:
The proapoptotic gene SIVA is a direct transcriptional target for
the tumor suppressors p53 and E2F1. J Biol Chem. 279:28706–28714.
2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Hershko T and Ginsberg D: Up-regulation of
Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J
Biol Chem. 279:8627–8634. 2004. View Article : Google Scholar : PubMed/NCBI
|
34
|
Polager S and Ginsberg D: P53 and E2f:
partners in life and death. Nat Rev Cancer. 9:738–748. 2009.
View Article : Google Scholar : PubMed/NCBI
|