Retinoic acid inhibits the cytoproliferative response to weak 50‑Hz magnetic fields in neuroblastoma cells
- Authors:
- María Ángeles Trillo
- María Antonia Martínez
- María Antonia Cid
- Alejandro Úbeda
-
Affiliations: Department of Research-BEM, IRYCIS, Hospital Ramon y Cajal, 28034 Madrid, Spain - Published online on: December 24, 2012 https://doi.org/10.3892/or.2012.2212
- Pages: 885-894
-
Copyright: © Trillo et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
This article is mentioned in:
Abstract
Kheifets LI, Afifi AA, Buffler PA and Zhang ZW: Occupational electric and magnetic field exposure and brain cancer: a meta-analysis. J Occup Environ Med. 37:1327–1341. 1995. View Article : Google Scholar : PubMed/NCBI | |
Kliukiene J, Tynes T and Andersen A: Residential and occupational exposures to 50-Hz magnetic fields and breast cancer in women: a population-based study. Am J Epidemiol. 159:852–861. 2004. View Article : Google Scholar : PubMed/NCBI | |
Davanipour Z and Sobel E: Long-term exposure to magnetic fields and the risks of Alzheimer’s disease and breast cancer: further biological research. Pathophysiology. 16:149–156. 2009. | |
Hakansson N, Gustavsson P, Johansen C and Floderus B: Neurodegenerative diseases in welders and other workers exposed to high levels of magnetic fields. Epidemiology. 14:420–426. 2003. View Article : Google Scholar : PubMed/NCBI | |
Huss A, Spoerri A, Egger M and Röösli M: Residence near power lines and mortality from neurodegenerative diseases: longitudinal study of the Swiss population. Am J Epidemiol. 169:167–175. 2009. View Article : Google Scholar : PubMed/NCBI | |
Feychting M and Forssen U: Electromagnetic fields and female breast cancer. Cancer Causes Control. 17:553–558. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kheifets L, Bowman JD, Checkoway H, Feychting M, Harrington JM, Kavet R, Marsh G, Mezei G, Renew DC and van Wijngaarden E: Future needs of occupational epidemiology of extremely low frequency electric and magnetic fields: review and recommendations. Occup Environ Med. 66:72–80. 2009. View Article : Google Scholar : PubMed/NCBI | |
International Agency for Research of Cancer (IARC). IARC monograph on the evaluation of carcinogenic risks to humans. 80:Non-ionizing radiation, Part 1: Static and extremely low-frequency (ELF) electric and magnetic fields. IARC Press; Lyon, France: 2002, Retrieved from: http://monographs.iarc.fr/ENG/Monographs/vol80/mono80.pdf. Last accessed 1 August 2012 | |
International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to time varying electric, magnetic and electromagnetic fields. Health Phys. 74:494–522. 1998.PubMed/NCBI | |
International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to time varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 99:818–836. 2010.PubMed/NCBI | |
Fedrowitz M and Loscher W: Exposure of Fischer 344 rats to a weak power frequency magnetic field facilitates mammary tumorigenesis in the DMBA model of breast cancer. Carcinogenesis. 29:186–193. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jiménez-García MN, Arellanes-Robledo J, Aparicio-Bautista DI, Rodríguez-Segura MA, Villa-Trevino S and Godina-Nava JJ: Anti-proliferative effect of extremely low frequency electromagnetic field on preneoplastic lesions formation in the rat liver. BMC Cancer. 10:159–170. 2010.PubMed/NCBI | |
Wen J, Jiang S and Chen B: The effect of 100 Hz magnetic field combined with X-ray on hepatoma-implanted mice. Bioelectromagnetics. 32:322–324. 2011. View Article : Google Scholar : PubMed/NCBI | |
Juutilainen J: Do electromagnetic fields enhance the effects of environmental carcinogens? Radiat Prot Dosimetry. 132:228–231. 2008. View Article : Google Scholar : PubMed/NCBI | |
Santini MT, Rainaldi G and Indovina PL: Cellular effects of extremely low frequency (ELF) electromagnetic fields. Int J Radiat Biol. 85:294–313. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li H, Zeng Q, Weng Y, Lu D, Jiang H and Xu Z: Effects of ELF magnetic fields on protein expression profile of human breast cancer cells MCF7. Sci China C Life Sci. 48:506–514. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lupke M, Frahm J, Lantow M, Maercker C, Remondini D, Bersani F and Simko M: Gene expression analysis of ELF-MF exposed human monocytes indicating the involvement of the alternative activation pathway. Biochim Biophys Acta. 1763:402–412. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vianale G, Reale M, Amerio P, Stefanachi M, Di Luzio S and Muraro R: Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br J Dermatol. 158:1189–1196. 2008. View Article : Google Scholar | |
Simko M, Kriehuber R, Weiss DG and Luben RA: Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and non-transformed human cell lines. Bioelectromagnetics. 19:85–91. 1998. View Article : Google Scholar : PubMed/NCBI | |
Nikolova T, Czyz J, Rolletschek A, Blyszczuk P, Fuchs J, Jovtchev G, Schuderer J, Kuster N and Wobus AM: Electromagnetic fields affect transcript levels of apoptosis-related genes in embryonic stem cell-derived neural progenitor cells. FASEB J. 19:1686–1688. 2005.PubMed/NCBI | |
Manikonda PK, Rajendra P, Devendranath D, Gunasekaran B, Channakeshava, Aradhya RS, Sashidhar RB and Subramanyam C: Influence of extremely low frequency magnetic fields on Ca2+ signaling and NMDA receptor functions in rat hippocampus. Neurosci Lett. 413:145–149. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gaetani R, Ledda M, Barile L, Chimenti I, De Carlo F, Forte E, Ionta V, Giuliani L, D’Emilia E, Frati G, Miraldi F, Pozzi D, Messina E, Grimaldi S, Giacomello A and Lisi A: Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovasc Res. 82:411–420. 2009. View Article : Google Scholar : PubMed/NCBI | |
Di Loreto S, Falone S, Caracciolo V, Sebastiani P, D’Alessandro A, Mirabilio A, Zimmitti V and Amicarelli F: Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J Cell Physiol. 219:334–343. 2009.PubMed/NCBI | |
Pirozzoli MC, Marino C, Lovisolo GA, Laconi C, Mosiello L and Negroni A: Effects of 50 Hz electromagnetic field exposure on apoptosis and differentiation in a neuroblastoma cell line. Bioelectromagnetics. 24:510–516. 2003. View Article : Google Scholar : PubMed/NCBI | |
Falone S, Grossi MR, Cinque B, D’Angelo B, Tettamanti E, Cimini A, Di Ilio C and Amicarelli F: Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. Int J Biochem Cell Biol. 39:2093–2106. 2007. View Article : Google Scholar : PubMed/NCBI | |
Eleuteri AM, Amici M, Bonfili L, Cecarini V, Cuccioloni M, Grimaldi S, Giuliani L, Angeletti M and Fioretti E: 50 Hz extremely low frequency electromagnetic fields enhance protein carbonyl groups content in cancer cells: effects on proteasomal systems. J Biomed Biotechnol. 2009:8342392009. View Article : Google Scholar | |
Simko M, Kriehuber R and Lange S: Micronucleus formation in human amnion cells after exposure to 50 Hz MF applied horizontally and vertically. Mutat Res. 418:101–111. 1998. View Article : Google Scholar : PubMed/NCBI | |
Ivancsits S, Diem E, Pilger A, Rudiger HW and Jahn O: Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutat Res. 519:1–13. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ivancsits S, Diem E, Jahn O and Rudiger HW: Intermittent extremely low frequency electromagnetic fields cause DNA damage in a dose-dependent way. Int Arch Occup Environ Health. 76:431–436. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ivancsits S, Diem E, Jahn O and Rudiger HW: Age-related effects on induction of DNA strand breaks by intermittent exposure to electromagnetic fields. Mech Ageing Dev. 124:847–850. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fatigoni C, Dominici L, Moretti M, Villarini M and Monarca S: Genotoxic effects of extremely low frequency (ELF) magnetic fields (MF) evaluated by the Tradescantia-micronucleus assay. Environ Toxicol. 20:585–591. 2005. View Article : Google Scholar : PubMed/NCBI | |
Simko M and Mattsson MO: Extremely low frequency electromagnetic fields as effectors of cellular responses in vitro: possible immune cell activation. J Cell Biochem. 93:83–92. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mannerling AC, Simkó M, Mild KH and Mattsson MO: Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells. Radiat Environ Biophys. 49:731–741. 2010. View Article : Google Scholar : PubMed/NCBI | |
Trillo MA, Martínez MA, Cid MA, Leal J and Úbeda A: Influence of a 50 Hz magnetic field and of all-trans-retinol on the proliferation of human cancer cell lines. Int J Oncol. 40:1405–1413. 2012.PubMed/NCBI | |
Tulachan SS, Doi R, Kawaguchi Y, Tsuji S, Nakajima S, Masui T, Koizumi M, Toyoda E, Mori T, Ito D, Kami K, Fujimoto K and Imamura M: All-trans retinoic acid induces differentiation of ducts and endocrine cells by mesenchymal/epithelial interactions in embryonic pancreas. Diabetes. 52:76–84. 2003. View Article : Google Scholar | |
Schenk T, Chen WC, Göllner S, Howell L, Jin L, Hebestreit K, Klein HU, Popescu AC, Burnett A, Mills K, Casero RA Jr, Marton L, Woster P, Minden MD, Dugas M, Wang JC, Dick JE, Müller-Tidow C, Petrie K and Zelent A: Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat Med. 18:605–611. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang QJ, Zhou LY, Mu YQ, Zhou QX, Luo JY, Cheng L, Deng ZL, He TC, Haydon RC and He BC: All-trans retinoic acid inhibits tumor growth of human osteosarcoma by activating Smad signaling-induced osteogenic differentiation. Int J Oncol. 41:153–160. 2012.PubMed/NCBI | |
Handler A, Lobo MD, Alonso FJ, Paíno CL and Mena MA: Functional implications of the noradrenergic-cholinergic switch induced by retinoic acid in NB69 neuroblastoma cells. J Neurosci Res. 60:311–320. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hölzel M, Huang S, Koster J, Ora I, Lakeman A, Caron H, Nijkamp W, Xie J, Callens T, Asgharzadeh S, Seeger RC, Messiaen L, Versteeg R and Bernards R: NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell. 142:218–229. 2010.PubMed/NCBI | |
Shih YY, Lee H, Nakagawara A, Juan HF, Jeng YM, Tsay YG, Lin DT, Hsieh FJ, Pan CY, Hsu WM and Liao YF: Nuclear GRP75 binds retinoic acid receptors to promote neuronal differentiation of neuroblastoma. PLoS One. 6:e262362011. View Article : Google Scholar : PubMed/NCBI | |
Di Nallo AM, Strigari L, Giliberti C, Bedini A, Palomba R and Benassi M: Monitoring of people and workers exposure to the electric, magnetic and electromagnetic fields in an Italian National Cancer Institute. J Exp Clin Cancer Res. 27:162008.PubMed/NCBI | |
Blackman CF, Benane SG and House DE: Evidence for direct effect of magnetic fields on neurite outgrowth. FASEB J. 7:801–806. 1993.PubMed/NCBI | |
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein dye-binding. Anal Biochem. 72:248–254. 1976. View Article : Google Scholar : PubMed/NCBI | |
Burton K: Study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 62:315–323. 1956.PubMed/NCBI | |
Woods AL, Hall PA, Shepherd NA, Hanby AM, Waseem NH, Lane DP and Levison DA: The assessment of proliferating cell nuclear antigen (PCNA) immunostaining in primary gastrointestinal lymphomas and its relationship to histological grade, S+G2+M phase fraction (flow cytometric analysis) and prognosis. Histopathology. 19:21–27. 1991. | |
Tan Z, Wortman M, Dillehay KL, Seibel WL, Evelyn CR, Smith SJ, Malkas LH, Zheng Y, Lu S and Dong Z: Small molecule targeting of PCNA chromatin association inhibits tumor cell growth. Mol Pharmacol. 81:811–819. 2012. View Article : Google Scholar : PubMed/NCBI | |
Martínez MA, Úbeda A, Cid MA and Trillo MA: The proliferative response of NB69 human neuroblastoma cells to a 50 Hz magnetic field is mediated by ERK1/2 signaling. Cell Physiol Biochem. 29:675–686. 2012.PubMed/NCBI | |
Kawasaki H, Mukai K, Yajima S, Tanaka R, Takayama J, Takasaki Y and Ohira M: Prognostic value of proliferating cell nuclear antigen (PCNA) immunostaining in neuroblastoma. Med Pediatr Oncol. 24:300–304. 1995. View Article : Google Scholar : PubMed/NCBI | |
Stoimenov I and Helleday T: PCNA on the crossroad of cancer. Biochem Soc Trans. 37:605–613. 2009. View Article : Google Scholar : PubMed/NCBI | |
Delle Monache S, Alessandro R, Iorio R, Gualtieri G and Colonna R: Extremely low frequency electromagnetic fields (ELF-EMFs) induce in vitro angiogenesis process in human endothelial cells. Bioelectromagnetics. 29:640–648. 2008.PubMed/NCBI | |
Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D’Ascenzo M, Grassi C, Azzena GB and Cittadini A: 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta. 1743:120–129. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sulpizio M, Falone S, Amicarelli F, Marchisio M, Di Giuseppe F, Eleuterio E, Di Ilio C and Angelucci S: Molecular basis underlying the biological effects elicited by extremely low-frequency magnetic field (ELF-MF) on neuroblastoma cells. J Cell Biochem. 112:3797–3806. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yoshizawa H, Tsuchiya T, Mizoe H, Ozeki H, Kanao S, Yomori H, Sakane C, Hasebe S, Motomura T, Yamakawa T, Mizuno F, Hirose H and Otaka Y: No effect of extremely low-frequency magnetic field observed on cell growth or initial response of cell proliferation in human cancer cell lines. Bioelectromagnetics. 23:355–368. 2002. View Article : Google Scholar : PubMed/NCBI | |
Grassi C, D’Ascenzo M, Torsello A, Martinotti G, Wolf F, Cittadini A and Azzena GB: Effects of 50 Hz electromagnetic fields on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium. 35:307–315. 2004.PubMed/NCBI | |
Bułdak RJ, Polaniak R, Bułdak L, Zwirska-Korczala K, Skonieczna M, Monsiol A, Kukla M, Duława-Bułdak A and Birkner E: Short-term exposure to 50 Hz ELF-EMF alters the cisplatin-induced oxidative response in AT478 murine squamous cell carcinoma cells. Bioelectromagnetics. 33:641–651. 2012.PubMed/NCBI | |
Hong MN, Han NK, Lee HC, Ko YK, Chi SG, Lee YS, Gimm YM, Myung SH and Lee JS: Extremely low frequency magnetic fields do not elicit oxidative stress in MCF10A cells. J Radiat Res. 53:79–86. 2012. View Article : Google Scholar | |
Ivancsits S, Pilger A, Diem E, Jahn O and Rüdiger HW: Cell type-specific genotoxic effects of intermittent extremely low-frequency electromagnetic fields. Mutat Res. 583:184–188. 2005.PubMed/NCBI | |
Focke F, Schuermann D, Kuster N and Schär P: DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure. Mutat Res. 683:74–83. 2010. View Article : Google Scholar : PubMed/NCBI | |
Repacholi M: Concern that ‘EMF’ magnetic fields from power lines cause cancer. Sci Total Environ. 426:454–458. 2012. | |
Ba F, Pang PK and Benishin CG: The establishment of a reliable cytotoxic system with SK-N-SH neuroblastoma cell culture. J Neurosci Methods. 123:11–22. 2003. View Article : Google Scholar : PubMed/NCBI | |
Úbeda A, Trillo MA, House DE and Blackman CF: A 50 Hz magnetic field blocks melatonin-induced enhancement of junctional transfer in normal C3H/10T1/2 cells. Carcinogenesis. 16:2945–2949. 1995.PubMed/NCBI | |
Blackman CF, Benane SG and House DE: The influence of 1.2 microT, 60 Hz magnetic fields on melatonin- and tamoxifen-induced inhibition of MCF-7 cell growth. Bioelectromagnetics. 22:122–128. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tonini R, Baroni MD, Masala E, Micheletti M, Ferroni A and Mazzanti M: Calcium protects differentiating neuroblastoma cells during 50 Hz electromagnetic radiation. Biophys J. 81:2580–2589. 2001. View Article : Google Scholar : PubMed/NCBI | |
Reynolds CP, Matthay KK, Villablanca JG and Maurer BJ: Retinoid therapy of high-risk neuroblastoma. Cancer Lett. 197:185–192. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kanemaru KK, Tuthill MC, Takeuchi KK, Sidell N and Wada RK: Retinoic acid induced downregulation of MYCN is not mediated through changes in Sp1/Sp3. Pediatr Blood Cancer. 50:806–811. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tanaka K, Tamiya-Koizumi K, Hagiwara K, Ito H, Takagi A, Kojima T, Suzuki M, Iwaki S, Fujii S, Nakamura M, Banno Y, Kannagi R, Tsurumi T, Kyogashima M and Murate T: Role of down-regulated neutral ceramidase during all-trans retinoic acid-induced neuronal differentiation in SH-SY5Y neuroblastoma cells. J Biochem. 151:611–620. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cetinkaya C, Hultquist A, Su Y, Wu S, Bahram F, Påhlman S, Guzhova I and Larsson LG: Combined IFN-gamma and retinoic acid treatment targets the N-Myc/Max/Mad1 network resulting in repression of N-Myc target genes in MYCN-amplified neuroblastoma cells. Mol Cancer Ther. 6:2634–2641. 2007. View Article : Google Scholar : PubMed/NCBI | |
Masiá S, Alvarez S, de Lera AR and Barettino D: Rapid, nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol Endocrinol. 21:2391–2402. 2007.PubMed/NCBI | |
Wegert J, Bausenwein S, Kneitz S, Roth S, Graf N, Geissinger E and Gessler M: Retinoic acid pathway activity in Wilms tumors and characterization of biological responses in vitro. Mol Cancer. 10:1362011. View Article : Google Scholar : PubMed/NCBI | |
Jiao RQ, Li G and Chiu JF: Comparative proteomic analysis of differentiation of mouse F9 embryonic carcinoma cells induced by retinoic acid. J Cell Biochem. 113:1811–1819. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li X, Li H, Bi J, Chen Y, Jain S and Zhao Y: Human cord blood-derived multipotent stem cells (CB-SCs) treated with all-trans-retinoic acid (ATRA) give rise to dopamine neurons. Biochem Biophys Res Commun. 419:110–116. 2012. | |
Marzinke MA and Clagett-Dame M: The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells. Exp Cell Res. 318:85–93. 2012. View Article : Google Scholar : PubMed/NCBI | |
Marcantonio P, Del Re B, Franceschini A, Capri M, Lukas S, Bersani F and Giorgi G: Synergic effect of retinoic acid and extremely low frequency magnetic field exposure on human neuroblastoma cell line BE(2)C. Bioelectromagnetics. 31:425–433. 2010.PubMed/NCBI | |
Lin H, Head M, Blank M, Han L, Jin M and Goodman R: Myc-mediated transactivation of HSP70 expression following exposure to magnetic fields. J Cell Biochem. 69:181–188. 1998. View Article : Google Scholar : PubMed/NCBI | |
Shaul YD and Seger R: The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta. 1773:1213–1226. 2007. View Article : Google Scholar : PubMed/NCBI | |
Karsy M, Albert L, Tobias ME, Murali R and Jhanwar-Uniyal M: All-trans retinoic acid modulates cancer stem cells of glioblastoma multiforme in an MAPK-dependent manner. Anticancer Res. 30:4915–4920. 2010.PubMed/NCBI | |
De Melo M, Gerbase MW, Curran J and Pache JC: Phosphorylated extracellular signal-regulated kinases are significantly increased in malignant mesothelioma. J Histochem Cytochem. 54:855–861. 2006.PubMed/NCBI | |
Menakongka A and Suthiphongchai T: Involvement of PI3K and ERK1/2 pathways in hepatocyte growth factor-induced cholangiocarcinoma cell invasion. World J Gastroenterol. 16:713–722. 2010. View Article : Google Scholar : PubMed/NCBI | |
Webster B, Hansen L, Adame A, Crews L, Torrance M, Thal L and Masliah E: Astroglial activation of extracellular-regulated kinase in early stages of Alzheimer disease. J Neuropathol Exp Neurol. 65:142–151. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dagda RK, Zhu J, Kulich SM and Chu CT: Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’s disease. Autophagy. 4:770–782. 2008.PubMed/NCBI | |
Kawamata J and Shimohama S: Stimulating nicotinic receptors trigger multiple pathways attenuating cytotoxicity in models of Alzheimer’s and Parkinson’s diseases. J Alzheimers Dis. 24(Suppl 2): 95–109. 2011.PubMed/NCBI | |
Jin M, Blank M and Goodman R: ERK1/2 phosphorylation, induced by electromagnetic fields, diminishes during neoplastic transformation. J Cell Biochem. 78:371–379. 2000. View Article : Google Scholar : PubMed/NCBI | |
Friedman J, Kraus S, Hauptman Y, Schiff Y and Seger R: Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J. 405:559–568. 2007. View Article : Google Scholar : PubMed/NCBI | |
Schmidt-Ullrich RK, Contessa JN, Lammering G, Amorino G and Lin PS: ERBB receptor tyrosine kinases and cellular radiation responses. Oncogene. 22:5855–5865. 2003. View Article : Google Scholar : PubMed/NCBI | |
Winker R, Ivancsits S, Pilger A, Adlkofer F and Rudiger HW: Chromosomal damage in human diploid fibroblasts by intermittent exposure to extremely low-frequency electromagnetic fields. Mutat Res. 585:43–49. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wahab MA, Podd JV, Rapley BI and Rowland RE: Elevated sister chromatid exchange frequencies in dividing human peripheral blood lymphocytes exposed to 50 Hz magnetic fields. Bioelectromagnetics. 28:281–288. 2007. View Article : Google Scholar | |
Stronati L, Testa A, Villani P, Marino C, Lovisolo GA, Conti D, Russo F, Fresegna AM and Cordelli E: Absence of genotoxicity in human blood cells exposed to 50 Hz magnetic fields as assessed by comet assay, chromosome aberration, micronucleus, and sister chromatid exchange analyses. Bioelectromagnetics. 25:41–48. 2004. View Article : Google Scholar | |
Scarfi MR, Sannino A, Perrotta A, Sarti M, Mesirca P and Bersani F: Evaluation of genotoxic effects in human fibroblasts after intermittent exposure to 50 Hz electromagnetic fields: a confirmatory study. Radiat Res. 164:270–276. 2005. View Article : Google Scholar : PubMed/NCBI | |
Adair RK: Extremely low frequency electromagnetic fields do not interact directly with DNA. Bioelectromagnetics. 19:136–138. 1998. View Article : Google Scholar : PubMed/NCBI | |
Wan C, Fiebig T, Schiemann O, Barton JK and Zewail AH: Femtosecond direct observation of charge transfer between bases in DNA. Proc Natl Acad Sci USA. 97:14052–14055. 2000. View Article : Google Scholar : PubMed/NCBI | |
Porath D, Bezryadin A, De Vries S and Dekker C: Direct measurement of electrical transport through DNA molecules. Nature. 403:635–638. 2000. View Article : Google Scholar : PubMed/NCBI | |
Giese B: Electron transfer through DNA and peptides. Bioorg Med Chem. 14:6139–6143. 2006. View Article : Google Scholar : PubMed/NCBI |