1
|
Bentzen SM, Poulsen HS, Kaae S, Jensen OM,
Johansen H, Mouridsen HT, Daugaard S and Arnoldi C: Prognostic
factors in osteosarcomas, a regression analysis. Cancer.
62:194–202. 1988. View Article : Google Scholar : PubMed/NCBI
|
2
|
Davis AM, Bell RS and Goodwin PJ:
Prognostic factors in osteosarcoma: a critical review. J Clin
Oncol. 12:423–431. 1994.PubMed/NCBI
|
3
|
Mankin HJ, Hornicek FJ, Rosenberg AE,
Harmon DC and Gebhardt MC: Survival data for 648 patients with
osteosarcoma treated at one institution. Clin Orthop Relat Res.
429:286–291. 2004. View Article : Google Scholar : PubMed/NCBI
|
4
|
Filipowicz W, Bhattacharyya SN and
Sonenberg N: Mechanisms of post-transcriptional regulation by
microRNAs: are the answers in sight? Nat Rev Genet. 9:102–114.
2008. View
Article : Google Scholar : PubMed/NCBI
|
5
|
Medina PP and Slack FJ: microRNAs and
cancer: an overview. Cell Cycle. 7:2485–2492. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Pillai RS, Bhattacharyya SN and
Filipowiczm W: Repression of protein synthesis by miRNAs: how many
mechanisms? Trends Cell Biol. 17:118–126. 2007. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Zhang B, Pan X, Cobb GP and Anderson TA:
microRNAs as oncogenes and tumor suppressors. Dev Biol. 302:1–12.
2007. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bartel DP: MicroRNAs: target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Caldas C and Brenton JD: Sizing up miRNAs
as cancer genes. Nat Med. 11:712–714. 2005. View Article : Google Scholar : PubMed/NCBI
|
11
|
He L, He X, Lim LP, de Stanchina E, Xuan
Z, et al: A microRNA component of the p53 tumour suppressor
network. Nature. 447:1130–1134. 2007. View Article : Google Scholar : PubMed/NCBI
|
12
|
Raver-Shapira N, Marciano E, Meiri E,
Spector Y, Rosenfeld N, et al: Transcriptional activation of
miR-34a contributes to p53-mediated apoptosis. Mol Cell.
26:731–743. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Welch C, Chen Y and Stallings RL:
MicroRNA-34a functions as a potential tumor suppressor by inducing
apoptosis in neuroblastoma cells. Oncogene. 26:5017–5022. 2007.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sun F, Fu H, Liu Q, Tie Y, Zhu J, et al:
Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle
arrest. FEBS Lett. 582:1564–1568. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wei JS, Song YK, Durinck S, Chen QR, Cheuk
AT, et al: The MYCN oncogene is a direct target of miR-34a.
Oncogene. 27:5204–5213. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Yamakuchi M, Ferlito M and Lowenstein CJ:
miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci
USA. 105:13421–13426. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen X, Yang TT, Wang W, Sun HH, Ma BA, Li
CX, Ma Q, Yu Z and Fan QY: Establishment and characterization of
human osteosarcoma cell lines with different pulmonary metastatic
potentials. Cytotechnology. 61:37–44. 2009. View Article : Google Scholar : PubMed/NCBI
|
19
|
He C, Xiong J, Xu X, Lu W, Liu L, Xiao D
and Wang D: Functional elucidation of MiR-34 in osteosarcoma cells
and primary tumor samples. Biochem Biophys Res Commun. 388:35–40.
2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Guo Y, Li S, Qu J, Wang S, Dang Y, et al:
MiR-34a inhibits lymphatic metastasis potential of mouse hepatoma
cells. Mol Cell Biochem. 354:275–282. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Liu C, Kelnar K, Liu B, Chen X,
Calhoun-Davis T, et al: The microRNA miR-34a inhibits prostate
cancer stem cells and metastasis by directly repressing CD44. Nat
Med. 17:211–215. 2011. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Lewis BP, Shih IH, Jones-Rhoades MW,
Bartel DP and Burge CB: Prediction of mammalian microRNA targets.
Cell. 115:787–798. 2003. View Article : Google Scholar : PubMed/NCBI
|
23
|
Krek A, Grün D, Poy MN, Wolf R, Rosenberg
L, et al: Combinatorial microRNA target predictions. Nat Genet.
37:495–500. 2005. View
Article : Google Scholar
|
24
|
John B, Enright AJ, Aravin A, Tuschl T,
Sander C and Marks DS: Human MicroRNA targets. PLoS Biol.
2:e2642004. View Article : Google Scholar
|
25
|
Coltella N, Manara MC, Cerisano V,
Trusolino L, et al: Role of the MET/HGF receptor in proliferation
and invasive behavior of osteosarcoma. FASEB J. 17:1162–1164.
2003.PubMed/NCBI
|
26
|
Tavazoie SF, Alarcón C, Oskarsson T, Padua
D, Wang Q, et al: Endogenous human microRNAs that suppress breast
cancer metastasis. Nature. 451:147–152. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Leite KR, Sousa-Canavez JM, Reis ST,
Tomiyama AH, Camara-Lopes LH, Sañudo A, Antunes AA and Srougi M:
Change in expression of miR-let7c, miR-100, and miR-218 from high
grade localized prostate cancer to metastasis. Urol Oncol.
29:265–269. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mazar J, DeBlasio D, Govindarajan SS,
Zhang S and Perera RJ: Epigenetic regulation of microRNA-375 and
its role in melanoma development in humans. FEBS Lett.
585:2467–2476. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Kumar MS, Lu J, Mercer KL, Golub TR and
Jacks T: Impaired microRNA processing enhances cellular
transformation and tumorigenesis. Nat Genet. 39:673–677. 2007.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Tan S, Li R, Ding K, Lobie PE and Zhu T:
miR-198 inhibits migration and invasion of hepatocellular carcinoma
cells by targeting the HGF/c-MET pathway. FEBS Lett. 585:2229–2234.
2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wu L, Cai C, Wang X, Liu M, Li X and Tang
H: MicroRNA-142-3p, a new regulator of RAC1, suppresses the
migration and invasion of hepatocellular carcinoma cells. FEBS
Lett. 585:1322–1330. 2011. View Article : Google Scholar : PubMed/NCBI
|
32
|
Cozzolino AM, Pedace L, Castori M, De
Simone P, Preziosi N, et al: Analysis of the miR-34a locus in 62
patients with familial cutaneous melanoma negative for CDKN2A/CDK4
screening. Fam Cancer. 11:201–208. 2012. View Article : Google Scholar : PubMed/NCBI
|
33
|
Yan D, Zhou X, Chen X, Hu D, Dong X, et
al: MicroRNA-34a Inhibits uveal melanoma cell proliferation and
migration through downregulation of c-Met. Invest Ophthalmol Vis
Sci. 50:1559–1565. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Zhao T, Li J and Chen AF: MicroRNA-34a
induces endothelial progenitor cell senescence and impedes its
angiogenesis via suppressing silent information regulator 1. Am J
Physiol Endocrinol Metab. 299:E110–E116. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pang RT, Leung CO, Ye TM, Liu W, Chiu PC,
et al: MicroRNA-34a suppresses invasion through downregulation of
Notch1 and Jagged1 in cervical carcinoma and choriocarcinoma cells.
Carcinogenesis. 31:1037–1044. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Doench JG and Sharp PA: Specificity of
microRNA target selection in translational repression. Genes Dev.
18:504–511. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Aruffo A, Stamenkovic I, Melnick M,
Underhill CB and Seed B: CD44 is the principal cell surface
receptor for hyaluronate. Cell. 61:1303–1313. 1990. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ponta H, Sherman L and Herrlich PA: CD44:
from adhesion molecules to signalling regulators. Nat Rev Mol Cell
Biol. 4:33–45. 2003. View Article : Google Scholar : PubMed/NCBI
|
39
|
Marhaba R and Zöller M: CD44 in cancer
progression: adhesion, migration and growth regulation. J Mol
Histol. 35:211–231. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Gotte M and Yip GW: Heparanase,
hyaluronan, and CD44 in cancers: a breast carcinoma perspective.
Cancer Res. 66:10233–10237. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Olsson E, Honeth G, Bendahl PO, Saal LH,
Gruvberger-Saal S, Ringnér M, et al: CD44 isoforms are
heterogeneously expressed in breast cancer and correlate with tumor
subtypes and cancer stem cell markers. BMC Cancer. 11:4182011.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Heyse TJ, Malcherczyk D, Moll R,
Timmesfeld N, Wapelhorst J, et al: CD44: survival and metastasis in
chondrosarcoma. Osteoarthritis Cartilage. 18:849–856. 2010.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Chen KL, Pan F, Jiang H, Chen JF, Pei L,
Xie FW and Liang HJ: Highly enriched
CD133+CD44+ stem-like cells with
CD133+CD44high metastatic subset in HCT116
colon cancer cells. Clin Exp Metastasis. 28:751–763. 2011.
|
44
|
Zhang C, Li C, He F, Cai Y and Yang H:
Identification of CD44+CD24+ gastric cancer
stem cells. J Cancer Res Clin Oncol. 137:1679–1686. 2011.PubMed/NCBI
|
45
|
Takaishi S, Okumura T, Tu S, Wang SS,
Shibata W, et al: Identification of gastric cancer stem cells using
the cell surface marker CD44. Stem Cells. 27:1006–1020. 2009.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Afify A, Purnell P and Nguyen L: Role of
CD44s and CD44v6 on human breast cancer cell adhesion, migration,
and invasion. Exp Mol Pathol. 86:95–100. 2009. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kim HS, Park YB, Oh JH, Jeong J, Kim CJ
and Lee SH: Expression of CD44 isoforms correlates with the
metastatic potential of osteosarcoma. Clin Orthop Relat Res.
396:184–190. 2002. View Article : Google Scholar : PubMed/NCBI
|
48
|
Visvader JE and Lindeman GJ: Cancer stem
cells in solid tumours: accumulating evidence and unresolved
questions. Nat Rev Cancer. 8:755–768. 2008. View Article : Google Scholar : PubMed/NCBI
|
49
|
Chen R, Nishimura MC, Bumbaca SM, et al: A
hierarchy of self-renewing tumor-initiating cell types in
glioblastoma. Cancer Cell. 17:362–375. 2010. View Article : Google Scholar : PubMed/NCBI
|
50
|
Jin L, Hope KJ, Zhai Q, Smadja-Joffe F and
Dick JE: Targeting of CD44 eradicates human acute myeloid leukemic
stem cells. Nat Med. 12:1167–1174. 2006. View Article : Google Scholar : PubMed/NCBI
|
51
|
Ji Q, Hao X, Zhang M, Tang W, Yang M, et
al: MicroRNA miR-34 inhibits human pancreatic cancer
tumor-initiating cells. PLoS One. 4:e68162009. View Article : Google Scholar : PubMed/NCBI
|
52
|
Wiggins JF, Ruffino L, Kelnar K, Omotola
M, Patrawala L, et al: Development of a lung cancer therapeutic
based on the tumor suppressor microRNA-34. Cancer Res.
70:5923–5930. 2010. View Article : Google Scholar : PubMed/NCBI
|
53
|
Huang N, Lin J, Ruan J, Su N, Qing R, Liu
F, He B, Lv C, Zheng D and Luo R: MiR-219-5p inhibits
hepatocellular carcinoma cell proliferation by targeting
glypican-3. FEBS Lett. 586:884–891. 2012. View Article : Google Scholar : PubMed/NCBI
|
54
|
Kang HW, Wang F, Wei Q, Zhao YF, Liu M, Li
X and Tang H: miR-20a promotes migration and invasion by regulating
TNKS2 in human cervical cancer cells. FEBS Lett. 586:897–904. 2012.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Wu L, Li H, Jia CY, Cheng W, Yu M, Peng M,
Zhu Y, Zhao Q, Dong YW, Shao K, Wu A and Wu XZ: MicroRNA-223
regulates FOXO1 expression and cell proliferation. FEBS Lett.
586:1038–1043. 2012. View Article : Google Scholar : PubMed/NCBI
|