1
|
Levy R, Dilley J, Fox RI, et al: A human
thymusleukemia antigen defined by hybridoma monoclonal antibodies.
Proc Natl Acad Sci USA. 76:6552–6556. 1979. View Article : Google Scholar : PubMed/NCBI
|
2
|
Bernard G, Raimondi V, Alberti I, et al:
CD99 (E2) up-regulates alpha4beta1-dependent T cell adhesion to
inflamed vascular endothelium under flow conditions. Eur J Immunol.
30:3061–3065. 2000. View Article : Google Scholar : PubMed/NCBI
|
3
|
Schenkel AR, Mamdouh Z, Chen X, et al:
CD99 plays a major role in the migration of monocytes through
endothelial junctions. Nature Immunol. 3:143–150. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Tato CM, Joyce-Shaikh B, Banerjee A, et
al: The myeloid receptor PILRβ mediates the balance of inflammatory
responses through regulation of IL-27 production. PLoS One.
7:e316802012.
|
5
|
Park HJ, Byun D, Lee AH, et al:
CD99-dependent expansion of myeloid-derived suppressor cells and
attenuation of graft-versus-host disease. Mol Cells. 33:259–267.
2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Dworzak MN, Froschl G, Printz D, et al:
CD99 expression in T-lineage ALL: implications for flow cytometric
detection of minimal residual disease. Leukemia. 18:703–708. 2004.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Maitra A, Hansel DE, Argani P, et al:
Global expression analysis of well-differentiated pancreatic
endocrine neoplasms using oligonucleotide microarrays. Clin Cancer
Res. 9:5988–5995. 2003.
|
8
|
Kang LC and Dunphy CH: Immunoreactivity of
MIC2 (CD99) and terminal deoxynucleotidyl transferase in bone
marrow clot and core specimens of acute myeloid leukemias and
myelodysplastic syndromes. Arch Pathol Lab Med. 130:153–157.
2006.
|
9
|
Diwan AH, Skelton HG III, Horenstein MG,
et al: Dermatofibrosarcoma protuberans and giant cell fibroblastoma
exhibit CD99 positivity. J Cutan Pathol. 35:647–650. 2008.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Ramsay AD, Bates AW, Williams S, et al:
Variable antigen expression in hepatoblastomas. Appl
Immunohistochem Mol Morphol. 16:140–147. 2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Suh YH, Shin YK, Kook MC, et al: Cloning,
genomic organization, alternative transcripts and expression
analysis of CD99L2, a novel paralog of human CD99, and
identification of evolutionary conserved motifs. Gene. 307:63–76.
2003. View Article : Google Scholar
|
12
|
Bixel MG, Petri B, Khandoga AG, et al: A
CD99-related antigen on endothelial cells mediates neutrophil but
not lymphocyte extravasation in vivo. Blood. 109:5327–5336. 2007.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Bixel MG, Li H, Petri B, et al: CD99 and
CD99L2 act at the same site as, but independently of, PECAM-1
during leukocyte diapedesis. Blood. 116:1172–1184. 2010. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kim KJ, Kanellopoulos-Langevin C, Merwin
RM, et al: Establishment and characterization of BALB/c lymphoma
lines with B cell properties. J Immunol. 122:549–554.
1979.PubMed/NCBI
|
15
|
Passineau MJ, Siegal GP, Everts M, et al:
The natural history of a novel, systemic, disseminated model of
syngeneic mouse B-cell lymphoma. Leuk Lymphoma. 46:1627–1638.
2005.PubMed/NCBI
|
16
|
Warncke M, Buchner M, Thaller G, et al:
Control of the specificity of T cell-mediated anti-idiotype
immunity by natural regulatory T cells. Cancer Immunol Immunother.
60:49–60. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liu F, Zhang G, Zhou XH, et al:
Immuno-characterization of mouse model similar to human diffuse
large B cell lymphoma. Zhongguo Shi Yan Xue Ye Xue Za Zhi.
18:655–659. 2010.(In Chinese).
|
18
|
Shen LJ, Fang WY, Xie SM, et al:
Expression and cloning of mCD99L2 gene from mouse B lymphoma cell
line A20 and construction of its eukaryotic expression vector. Nan
Fang Yi Ke Da Xue Xue Bao. 26:144–149. 2006.(In Chinese).
|
19
|
Kim SH, Choi EY, Shin YK, et al:
Generation of cells with Hodgkin’s and Reed-Sternberg phenotype
through downregulation of CD99 (Mic2). Blood. 92:4287–4295.
1998.
|
20
|
Kim SH, Shin YK, Lee IS, et al: Viral
latent membrane protein 1 (LMP-1)-induced CD99 down-regulation in B
cells leads to the generation of cells with Hodgkin’s and
Reed-Sternberg phenotype. Blood. 95:294–300. 2000.PubMed/NCBI
|
21
|
Huang X, Zhou X, Wang Z, et al: CD99
triggers upregulation of miR-9-modulated PRDM1/BLIMP1 in
Hodgkin/Reed-Sternberg cells and induces redifferentiation. Int J
Cancer. 131:E382–E394. 2012. View Article : Google Scholar : PubMed/NCBI
|
22
|
Burgess SC, Young JR, Baaten BJ, et al:
Marek’s disease is a natural model for lymphomas overexpressing
Hodgkin’s disease antigen (CD30). Proc Natl Acad Sci USA.
101:13879–13884. 2004.
|
23
|
Scotlandi K, Zuntini M, Manara MC, et al:
CD99 isoforms dictate opposite functions in tumour malignancy and
metastases by activating or repressing c-Src kinase activity.
Oncogene. 26:6604–6618. 2007. View Article : Google Scholar : PubMed/NCBI
|
24
|
Garcia JF, Camacho FI, Morente M, et al:
Hodgkin and Reed-Sternberg cells harbor alterations in the major
tumor suppressor pathways and cell-cycle checkpoints: analyses
using tissue microarrays. Blood. 101:681–689. 2003. View Article : Google Scholar
|
25
|
Sánchez-Aguilera A, Montalbán C, de la
Cueva P, et al: Tumor microenvironment and mitotic checkpoint are
key factors in the outcome of classic Hodgkin lymphoma. Blood.
108:662–668. 2006.PubMed/NCBI
|
26
|
Marafioti T, Hummel M, Foss HD, et al:
Hodgkin and Reed-Sternberg cells represent an expansion of a single
clone originating from a germinal center B-cell with functional
immunoglobulin gene rearrangements but defective immunoglobulin
transcription. Blood. 95:1443–1450. 2000.
|
27
|
Maggio E, van den Berg A, Diepstra A, et
al: Chemokines, cytokines and their receptors in Hodgkin’s lymphoma
cell lines and tissues. Ann Oncol. 13(Suppl 1): 52–56. 2002.
|
28
|
Skinnider BF and Mak TW: The role of
cytokines in classical Hodgkin lymphoma. Blood. 99:4283–4297. 2002.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Steidl C, Connors JM and Gascoyne RD:
Molecular pathogenesis of Hodgkin’s lymphoma: increasing evidence
of the importance of the microenvironment. J Clin Oncol.
29:1812–1826. 2011.
|
30
|
Aldinucci D, Olivo K, Lorenzon D, et al:
The role of interleukin-3 in classical Hodgkin’s disease. Leuk
Lymphoma. 46:303–311. 2005.
|
31
|
Niederkorn JY: Emerging concepts in CD8(+)
T regulatory cells. Curr Opin Immunol. 20:327–331. 2008.
|
32
|
Lee IS, Kim SH, Song HG, et al: The
molecular basis for the generation of Hodgkin and Reed-Sternberg
cells in Hodgkin’s lymphoma. Int J Hematol. 77:330–335. 2003.
|
33
|
Hanamoto H, Nakayama T, Miyazato H, et al:
Expression of CCL28 by Reed-Sternberg cells defines a major subtype
of classical Hodgkin’s disease with frequent infiltration of
eosinophils and/or plasma cells. Am J Pathol. 164:997–1006.
2004.PubMed/NCBI
|
34
|
Luft T, Luetjens P, Hochrein H, et al:
IFN-alpha enhances CD40 ligand-mediated activation of immature
monocyte-derived dendritic cells. Int Immunol. 14:367–380. 2002.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Meijer J, Ogink J, Kreike B, et al: The
chemokine receptor CXCR6 and its ligand CXCL16 are expressed in
carcinomas and inhibit proliferation. Cancer Res. 68:4701–4708.
2008. View Article : Google Scholar : PubMed/NCBI
|
36
|
Horie R, Watanabe T, Morishita Y, et al:
Ligand-independent signaling by overexpressed CD30 drives NF-kappaB
activation in Hodgkin-Reed-Sternberg cells. Oncogene. 21:2493–2503.
2002. View Article : Google Scholar : PubMed/NCBI
|
37
|
Aldinucci D, Lorenzon D, Cattaruzza L,
Pinto A, Gloghini A, Carbone A and Colombatti A: Expression of CCR5
receptors on Reed-Sternberg cells and Hodgkin lymphoma cell lines:
involvement of CCL5/Rantes in tumor cell growth and
microenvironmental interactions. Int J Cancer. 122:769–776. 2008.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Schwarzer R and Jundt F: Notch and NF-κB
signaling pathways in the biology of classical Hodgkin lymphoma.
Curr Mol Med. 11:236–245. 2011.
|