1
|
GASTRIC (Global Advanced/Adjuvant Stomach
Tumor Research International Collaboration) Group. Paoletti X, Oba
K, Burzykowski T, Michiels S, Ohashi Y, Pignon JP, Rougier P,
Sakamoto J, Sargent D, Sasako M, Van Cutsem E and Buyse M: Benefit
of adjuvant chemotherapy for resectable gastric cancer: a
meta-analysis. JAMA. 303:1729–1737. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Sakuramoto S, Sasako M, Yamaguchi T,
Kinoshita T, Fujii M, Nashimoto A, Furukawa H, Nakajima T, Ohashi
Y, Imamura H, Higashino M, Yamamura Y, Kurita A and Arai K:
Adjuvant chemotherapy for gastric cancer with S-1, an oral
fluoropyrimidine. N Engl J Med. 357:1810–1820. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Bang YJ, Kim YW, Yang HK, Chung HC, Park
YK, Lee KH, Lee KW, Kim YH, Noh SI, Cho JY, Mok YJ, Ji J, Yeh TS,
Button P, Sirzen F and Noh SH; CLASSIC trial investigators.
Adjuvant capecitabine and oxaliplatin for gastric cancer after D2
gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled
trial. Lancet. 379:315–321. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Sasako M, Sakuramoto S, Katai H, Kinoshita
T, Furukawa H, Yamaguchi T, Nashimoto A, Fujii M, Nakajima T and
Ohashi Y: Five-year outcomes of a randomized phase III trial
comparing adjuvant chemotherapy with S-1 versus surgery alone in
stage II or III gastric cancer. J Clin Oncol. 29:4387–4393.
2011.PubMed/NCBI
|
5
|
Gooden MJ, de Bock GH, Leffers N, Daemen T
and Nijman HW: The prognostic influence of tumour-infiltrating
lymphocytes in cancer: a systematic review with meta-analysis. Br J
Cancer. 105:93–103. 2011. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hwang WT, Adams SF, Tahirovic E, Hagemann
IS and Coukos G: Prognostic significance of tumor-infiltrating T
cells in ovarian cancer: a meta-analysis. Gynecol Oncol.
124:192–198. 2012. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ropponen KM, Eskelinen MJ, Lipponen PK,
Alhava E and Kosma VM: Prognostic value of tumour-infiltrating
lymphocytes (TILs) in colorectal cancer. J Pathol. 182:318–324.
1997. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yannelli JR, Hyatt C, McConnell S, Hines
K, Jacknin L, Parker L, Sanders M and Rosenberg SA: Growth of
tumor-infiltrating lymphocytes from human solid cancers: summary of
a 5-year experience. Int J Cancer. 65:413–421. 1996.PubMed/NCBI
|
9
|
Nosho K, Baba Y, Tanaka N, Shima K,
Hayashi M, Meyerhardt JA, Giovannucci E, Dranoff G, Fuchs CS and
Ogino S: Tumour-infiltrating T-cell subsets, molecular changes in
colorectal cancer, and prognosis: cohort study and literature
review. J Pathol. 222:350–366. 2010. View Article : Google Scholar
|
10
|
Hiraoka N: Tumor-infiltrating lymphocytes
and hepatocellular carcinoma: molecular biology. Int J Clin Oncol.
15:544–551. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Nelson BH: CD20+ B cells: the
other tumor-infiltrating lymphocytes. J Immunol. 185:4977–4982.
2010.PubMed/NCBI
|
12
|
Zhang L, Conejo-Garcia JR, Katsaros D,
Gimotty PA, Massobrio M, Regnani G, Makrigiannakis A, Gray H,
Schlienger K, Liebman MN, Rubin SC and Coukos G: Intratumoral T
cells, recurrence, and survival in epithelial ovarian cancer. N
Engl J Med. 348:203–213. 2003. View Article : Google Scholar : PubMed/NCBI
|
13
|
Naito Y, Saito K, Shiiba K, Ohuchi A,
Saigenji K, Nagura H and Ohtani H: CD8+ T cells
infiltrated within cancer cell nests as a prognostic factor in
human colorectal cancer. Cancer Res. 58:3491–3494. 1998.PubMed/NCBI
|
14
|
Wada Y, Nakashima O, Kutami R, Yamamoto O
and Kojiro M: Clinicopathological study on hepatocellular carcinoma
with lymphocytic infiltration. Hepatology. 27:407–414. 1998.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Dunn GP, Old LJ and Schreiber RD: The
three Es of cancer immunoediting. Annu Rev Immunol. 22:329–360.
2004. View Article : Google Scholar : PubMed/NCBI
|
16
|
Johansson M, Denardo DG and Coussens LM:
Polarized immune responses differentially regulate cancer
development. Immunol Rev. 222:145–154. 2008. View Article : Google Scholar : PubMed/NCBI
|
17
|
Miyahara Y, Odunsi K, Chen W, Peng G,
Matsuzaki J and Wang RF: Generation and regulation of human
CD4+ IL-17-producing T cells in ovarian cancer. Proc
Natl Acad Sci USA. 105:15505–15510. 2008. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kryczek I, Banerjee M, Cheng P, Vatan L,
Szeliga W, Wei S, Huang E, Finlayson E, Simeone D, Welling TH,
Chang A, Coukos G, Liu R and Zou W: Phenotype, distribution,
generation, and functional and clinical relevance of Th17 cells in
the human tumor environments. Blood. 114:1141–1149. 2009.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhang JP, Yan J, Xu J, Pang XH, Chen MS,
Li L, Wu C, Li SP and Zheng L: Increased intratumoral
IL-17-producing cells correlate with poor survival in
hepatocellular carcinoma patients. J Hepatol. 50:980–989. 2009.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Wilke CM, Wu K, Zhao E, Wang G and Zou W:
Prognostic significance of regulatory T cells in tumor. Int J
Cancer. 127:748–758. 2010.PubMed/NCBI
|
21
|
Curiel TJ: Regulatory T cells and
treatment of cancer. Curr Opin Immunol. 20:241–246. 2008.
View Article : Google Scholar
|
22
|
Hiraoka N, Onozato K, Kosuge T and
Hirohashi S: Prevalence of FOXP3+ regulatory T cells
increases during the progression of pancreatic ductal
adenocarcinoma and its premalignant lesions. Clin Cancer Res.
12:5423–5434. 2006.
|
23
|
Kobayashi N, Hiraoka N, Yamagami W, Ojima
H, Kanai Y, Kosuge T, Nakajima A and Hirohashi S: FOXP3+
regulatory T cells affect the development and progression of
hepatocarcinogenesis. Clin Cancer Res. 13:902–911. 2007.
|
24
|
Charbonneau H, Tonks NK, Walsh KA and
Fischer EH: The leukocyte common antigen (CD45): a putative
receptor-linked protein tyrosine phosphatase. Proc Natl Acad Sci
USA. 85:7182–7186. 1988. View Article : Google Scholar : PubMed/NCBI
|
25
|
Merkenschlager M and Beverley PC: Evidence
for differential expression of CD45 isoforms by precursors for
memory-dependent and independent cytotoxic responses: human CD8
memory CTLp selectively express CD45RO (UCHL1). Int Immunol.
1:450–459. 1989. View Article : Google Scholar
|
26
|
Merkenschlager M, Terry L, Edwards R and
Beverley PC: Limiting dilution analysis of proliferative responses
in human lymphocyte populations defined by the monoclonal antibody
UCHL1: implications for differential CD45 expression in T cell
memory formation. Eur J Immunol. 18:1653–1661. 1988. View Article : Google Scholar
|
27
|
Zola H, Flego L, Macardle PJ, Donohoe PJ,
Ranford J and Roberton D: The CD45RO (p180, UCHL1) marker:
complexity of expression in peripheral blood. Cell Immunol.
145:175–186. 1992. View Article : Google Scholar : PubMed/NCBI
|
28
|
Picker LJ, Singh MK, Zdraveski Z, Treer
JR, Waldrop SL, Bergstresser PR and Maino VC: Direct demonstration
of cytokine synthesis heterogeneity among human memory/effector T
cells by flow cytometry. Blood. 86:1408–1419. 1995.PubMed/NCBI
|
29
|
Michie CA, McLean A, Alcock C and Beverley
PC: Lifespan of human lymphocyte subsets defined by CD45 isoforms.
Nature. 360:264–265. 1992. View
Article : Google Scholar : PubMed/NCBI
|
30
|
Gray D: Immunological memory. Annu Rev
Immunol. 11:49–77. 1993. View Article : Google Scholar
|
31
|
Dutton RW, Bradley LM and Swain SL: T cell
memory. Annu Rev Immunol. 16:201–223. 1998. View Article : Google Scholar : PubMed/NCBI
|
32
|
Sallusto F, Geginat J and Lanzavecchia A:
Central memory and effector memory T cell subsets: function,
generation, and maintenance. Annu Rev Immunol. 22:745–763. 2004.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Galon J, Costes A, Sanchez-Cabo F,
Kirilovsky A, Mlecnik B, Lagorce-Pages C, Tosolini M, Camus M,
Berger A, Wind P, Zinzindohoue F, Bruneval P, Cugnenc PH,
Trajanoski Z, Fridman WH and Pages F: Type, density, and location
of immune cells within human colorectal tumors predict clinical
outcome. Science. 313:1960–1964. 2006. View Article : Google Scholar : PubMed/NCBI
|
34
|
Lee HE, Chae SW, Lee YJ, Kim MA, Lee HS,
Lee BL and Kim WH: Prognostic implications of type and density of
tumour-infiltrating lymphocytes in gastric cancer. Br J Cancer.
99:1704–1711. 2008. View Article : Google Scholar : PubMed/NCBI
|
35
|
Pages F, Berger A, Camus M, Sanchez-Cabo
F, Costes A, Molidor R, Mlecnik B, Kirilovsky A, Nilsson M, Damotte
D, Meatchi T, Bruneval P, Cugnenc PH, Trajanoski Z, Fridman WH and
Galon J: Effector memory T cells, early metastasis, and survival in
colorectal cancer. N Engl J Med. 353:2654–2666. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Rauser S, Langer R, Tschernitz S, Gais P,
Jutting U, Feith M, Hofler H and Walch A: High number of
CD45RO+ tumor infiltrating lymphocytes is an independent
prognostic factor in non-metastasized (stage I-IIA) esophageal
adenocarcinoma. BMC Cancer. 10:6082010.PubMed/NCBI
|
37
|
Enomoto K, Sho M, Wakatsuki K, Takayama T,
Matsumoto S, Nakamura S, Akahori T, Tanaka T, Migita K, Ito M and
Nakajima Y: Prognostic importance of tumour-infiltrating memory T
cells in oesophageal squamous cell carcinoma. Clin Exp Immunol.
168:186–191. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hotta K, Sho M, Fujimoto K, Shimada K,
Yamato I, Anai S, Konishi N, Hirao Y, Nonomura K and Nakajima Y:
Prognostic significance of CD45RO+ memory T cells in
renal cell carcinoma. Br J Cancer. 105:1191–1196. 2011. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sallusto F, Lenig D, Forster R, Lipp M and
Lanzavecchia A: Two subsets of memory T lymphocytes with distinct
homing potentials and effector functions. Nature. 401:708–712.
1999. View Article : Google Scholar
|
40
|
Forster R, Schubel A, Breitfeld D, Kremmer
E, Renner-Muller I, Wolf E and Lipp M: CCR7 coordinates the primary
immune response by establishing functional microenvironments in
secondary lymphoid organs. Cell. 99:23–33. 1999. View Article : Google Scholar : PubMed/NCBI
|
41
|
Geginat J, Lanzavecchia A and Sallusto F:
Proliferation and differentiation potential of human
CD8+ memory T-cell subsets in response to antigen or
homeostatic cytokines. Blood. 101:4260–4266. 2003.PubMed/NCBI
|
42
|
Rosenberg SA, Dudley ME and Restifo NP:
Cancer immunotherapy. N Engl J Med. 359:10722008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Yamato I, Sho M, Nomi T, Akahori T,
Shimada K, Hotta K, Kanehiro H, Konishi N, Yagita H and Nakajima Y:
Clinical importance of B7-H3 expression in human pancreatic cancer.
Br J Cancer. 101:1709–1716. 2009. View Article : Google Scholar : PubMed/NCBI
|
44
|
Nomi T, Sho M, Akahori T, Hamada K, Kubo
A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M and
Nakajima Y: Clinical significance and therapeutic potential of the
programmed death-1 ligand/programmed death-1 pathway in human
pancreatic cancer. Clin Cancer Res. 13:2151–2157. 2007. View Article : Google Scholar : PubMed/NCBI
|
45
|
Ohigashi Y, Sho M, Yamada Y, Tsurui Y,
Hamada K, Ikeda N, Mizuno T, Yoriki R, Kashizuka H, Yane K,
Tsushima F, Otsuki N, Yagita H, Azuma M and Nakajima Y: Clinical
significance of programmed death-1 ligand-1 and programmed death-1
ligand-2 expression in human esophageal cancer. Clin Cancer Res.
11:2947–2953. 2005. View Article : Google Scholar : PubMed/NCBI
|
46
|
Hodi FS, O’Day SJ, McDermott DF, Weber RW,
Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel
JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM,
Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I,
Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos
A and Urba WJ: Improved survival with ipilimumab in patients with
metastatic melanoma. N Engl J Med. 363:711–723. 2010. View Article : Google Scholar
|