1
|
Stinchcombe TE, Bogart J, Wigle DA and
Govindan R: Annual review of advances in lung cancer clinical
research: a report for the year 2009. J Thorac Oncol. 5:935–939.
2010.PubMed/NCBI
|
2
|
Perez-Moreno P, Brambilla E, Thomas R and
Soria JC: Squamous cell carcinoma of the lung: molecular subtypes
and therapeutic opportunities. Clin Cancer Res. 18:2443–2451. 2012.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Subramanian J, Corrales L, Soulieres D,
Morgensztern D and Govindan R: Summary of presentations from the
46th Annual Meeting of the American Society of Clinical Oncology
(2010) focus on tumor biology and biomarkers related to lung
cancer. J Thorac Oncol. 6:399–403. 2011. View Article : Google Scholar : PubMed/NCBI
|
4
|
Behrens C, Lin HY, Lee JJ, et al:
Immunohistochemical expression of basic fibroblast growth factor
and fibroblast growth factor receptors 1 and 2 in the pathogenesis
of lung cancer. Clin Cancer Res. 14:6014–6022. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Sasaki H, Shitara M, Yokota K, et al:
Increased FGFR1 copy number in lung squamous cell carcinomas. Mol
Med Rep. 5:725–728. 2012.PubMed/NCBI
|
6
|
Peifer M, Fernandez-Cuesta L, Sos ML, et
al: Integrative genome analyses identify key somatic driver
mutations of small-cell lung cancer. Nat Genet. 44:1104–1110. 2012.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Turner N and Grose R: Fibroblast growth
factor signalling: from development to cancer. Nat Rev Cancer.
10:116–129. 2010. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Larsson H, Klint P, Landgren E and
Claesson-Welsh L: Fibroblast growth factor receptor-1-mediated
endothelial cell proliferation is dependent on the Src homology
(SH) 2/SH3 domain-containing adaptor protein Crk. J Biol Chem.
274:25726–25734. 1999. View Article : Google Scholar : PubMed/NCBI
|
9
|
Sandilands E, Akbarzadeh S, Vecchione A,
McEwan DG, Frame MC and Heath JK: Src kinase modulates the
activation, transport and signalling dynamics of fibroblast growth
factor receptors. EMBO Rep. 8:1162–1169. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
O’Hare T, Shakespeare WC, Zhu X, et al:
AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia,
potently inhibits the T315I mutant and overcomes mutation-based
resistance. Cancer Cell. 16:401–412. 2009.PubMed/NCBI
|
11
|
Chase A, Bryant C, Score J and Cross NC:
Ponatinib as targeted therapy for FGFR1 fusions associated with the
8p11 myeloproliferative syndrome. Haematologica. 98:103–106. 2013.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Ren M, Qin H, Ren R and Cowell JK:
Ponatinib suppresses the development of myeloid and lymphoid
malignancies associated with FGFR1 abnormalities. Leukemia.
27:32–40. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ren M and Cowell JK: Constitutive Notch
pathway activation in murine ZMYM2-FGFR1-induced T-cell lymphomas
associated with atypical myeloproliferative disease. Blood.
117:6837–6847. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Darzynkiewicz Z and Juan G: Analysis of
DNA content and BrdU incorporation. Curr Protoc Cytom. 7(unit
7.7)2001. View Article : Google Scholar
|
15
|
Ren M, Qin H, Ren R, Tidwell J and Cowell
JK: Src activation plays an important key role in lymphomagenesis
induced by FGFR1 fusion kinases. Cancer Res. 71:7312–7322. 2011.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Silva J, Wang G and Cowell JK: The
temporal and spatial expression pattern of the LGI1 epilepsy
predisposition gene during mouse embryonic cranial development. BMC
Neurosci. 12:432011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ren M, Li X and Cowell JK: Genetic
fingerprinting of the development and progression of T-cell
lymphoma in a murine model of atypical myeloproliferative disorder
initiated by the ZNF198-fibroblast growth factor receptor-1
chimeric tyrosine kinase. Blood. 114:1576–1584. 2009. View Article : Google Scholar
|
18
|
Weiss J, Sos ML, Seidel D, et al: Frequent
and focal FGFR1 amplification associates with therapeutically
tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl
Med. 2:62ra932010. View Article : Google Scholar : PubMed/NCBI
|
19
|
Stratton MR: Exploring the genomes of
cancer cells: progress and promise. Science. 331:1553–1558. 2011.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Garnett MJ, Edelman EJ, Heidorn SJ, et al:
Systematic identification of genomic markers of drug sensitivity in
cancer cells. Nature. 483:570–575. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ashworth A, Lord CJ and Reis-Filho JS:
Genetic interactions in cancer progression and treatment. Cell.
145:30–38. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Mok TS, Wu YL, Thongprasert S, et al:
Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N
Engl J Med. 361:947–957. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhou C, Wu YL, Chen G, et al: Erlotinib
versus chemotherapy as first-line treatment for patients with
advanced EGFR mutation-positive non-small-cell lung cancer
(OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase
III study. Lancet Oncol. 12:735–742. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rosell R, Li S, Skacel Z, et al:
Prognostic impact of mutated K-ras gene in surgically resected
non-small cell lung cancer patients. Oncogene. 8:2407–2412.
1993.PubMed/NCBI
|
25
|
Kwak EL, Bang YJ, Camidge DR, et al:
Anaplastic lymphoma kinase inhibition in non-small-cell lung
cancer. N Engl J Med. 363:1693–1703. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Bergethon K, Shaw AT, Ou SH, et al: ROS1
rearrangements define a unique molecular class of lung cancers. J
Clin Oncol. 30:863–870. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Janne PA and Meyerson M: ROS1
rearrangements in lung cancer: a new genomic subset of lung
adenocarcinoma. J Clin Oncol. 30:878–879. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kohno T, Ichikawa H, Totoki Y, et al:
KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 18:375–377.
2012. View
Article : Google Scholar : PubMed/NCBI
|
29
|
Takeuchi K, Soda M, Togashi Y, et al: RET,
ROS1 and ALK fusions in lung cancer. Nat Med. 18:378–381. 2012.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Samuels Y and Velculescu VE: Oncogenic
mutations of PIK3CA in human cancers. Cell Cycle. 3:1221–1224.
2004. View Article : Google Scholar : PubMed/NCBI
|
31
|
Kim ES and Salgia R: MET pathway as a
therapeutic target. J Thorac Oncol. 4:444–447. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Dutt A, Ramos AH, Hammerman PS, et al:
Inhibitor-sensitive FGFR1 amplification in human non-small cell
lung cancer. PLoS One. 6:e203512011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Marek L, Ware KE, Fritzsche A, et al:
Fibroblast growth factor (FGF) and FGF receptor-mediated autocrine
signaling in non-small-cell lung cancer cells. Mol Pharmacol.
75:196–207. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ware KE, Marshall ME, Heasley LR, et al:
Rapidly acquired resistance to EGFR tyrosine kinase inhibitors in
NSCLC cell lines through de-repression of FGFR2 and FGFR3
expression. PLoS One. 5:e141172010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gozgit JM, Wong MJ, Moran L, et al:
Ponatinib (AP24534), a multi-targeted pan-FGFR inhibitor with
activity in multiple FGFR-amplified or mutated cancer models. Mol
Cancer Ther. 11:690–699. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Kwek SS, Roy R, Zhou H, et al:
Co-amplified genes at 8p12 and 11q13 in breast tumors cooperate
with two major pathways in oncogenesis. Oncogene. 28:1892–1903.
2009. View Article : Google Scholar : PubMed/NCBI
|
37
|
Shiang CY, Qi Y, Wang B, et al:
Amplification of fibroblast growth factor receptor-1 in breast
cancer and the effects of brivanib alaninate. Breast Cancer Res
Treat. 123:747–755. 2010. View Article : Google Scholar : PubMed/NCBI
|
38
|
Turner N, Pearson A, Sharpe R, et al:
FGFR1 amplification drives endocrine therapy resistance and is a
therapeutic target in breast cancer. Cancer Res. 70:2085–2094.
2010. View Article : Google Scholar
|
39
|
Freeman KW, Welm BE, Gangula RD, et al:
Inducible prostate intraepithelial neoplasia with reversible
hyperplasia in conditional FGFR1-expressing mice. Cancer Res.
63:8256–8263. 2003.PubMed/NCBI
|
40
|
Freeman KW, Gangula RD, Welm BE, et al:
Conditional activation of fibroblast growth factor receptor (FGFR)
1, but not FGFR2, in prostate cancer cells leads to increased
osteopontin induction, extracellular signal-regulated kinase
activation, and in vivo proliferation. Cancer Res. 63:6237–6243.
2003.
|
41
|
Mayr D, Kanitz V, Anderegg B, et al:
Analysis of gene amplification and prognostic markers in ovarian
cancer using comparative genomic hybridization for microarrays and
immunohistochemical analysis for tissue microarrays. J Clin Pathol.
126:101–109. 2006. View Article : Google Scholar : PubMed/NCBI
|
42
|
Beroukhim R, Mermel CH, Porter D, et al:
The landscape of somatic copy-number alteration across human
cancers. Nature. 463:899–905. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Roumiantsev S, Krause DS, Neumann CA, et
al: Distinct stem cell myeloproliferative/T lymphoma syndromes
induced by ZNF198-FGFR1 and BCR-FGFR1 fusion genes from 8p11
translocations. Cancer Cell. 5:287–298. 2004. View Article : Google Scholar : PubMed/NCBI
|