microRNA detection in feces, sputum, pleural effusion and urine: Novel tools for cancer screening (Review)
- Authors:
- Yu-Feng Xiao
- Xin Yong
- Ya-Han Fan
- Mu-Han Lü
- Shi-Ming Yang
- Chang-Jiang Hu
-
Affiliations: Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China - Published online on: June 7, 2013 https://doi.org/10.3892/or.2013.2525
- Pages: 535-544
This article is mentioned in:
Abstract
Corte H, Manceau G, Blons H and Laurent-Puig P: MicroRNA and colorectal cancer. Digest Liver Dis. 44:195–200. 2012. View Article : Google Scholar | |
Jemal A, Siegel R, Ward E, Hao YP, Xu JQ and Thun MJ: Cancer Statistics, 2009. CA Cancer J Clin. 59:225–249. 2009. View Article : Google Scholar | |
Frost JK, Ball WC Jr, Levin ML, et al: Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Johns Hopkins study. Am Rev Respir Dis. 130:549–554. 1984.PubMed/NCBI | |
Flehinger BJ, Kimmel M and Melamed MR: The effect of surgical treatment on survival from early lung cancer. Implications for screening. Chest. 101:1013–1018. 1992. View Article : Google Scholar : PubMed/NCBI | |
Patz EF Jr, Rossi S, Harpole DH Jr, Herndon JE and Goodman PC: Correlation of tumor size and survival in patients with stage IA non-small cell lung cancer. Chest. 117:1568–1571. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yu L, Todd NW, Xing LX, et al: Early detection of lung adenocarcinoma in sputum by a panel of microRNA markers. Int J Cancer. 127:2870–2878. 2010. View Article : Google Scholar : PubMed/NCBI | |
Subramanian J and Simon R: Gene expression-based prognostic signatures in lung cancer: ready for clinical use? J Natl Cancer Inst. 102:464–474. 2010. View Article : Google Scholar : PubMed/NCBI | |
Greer KB and Cooper GS: Receipt of colonoscopy is key to reduction of colorectal cancer mortality. Gastrointest Endosc. 76:365–366. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chang KC and Yew WW: What is the role of autofluorescence bronchoscopy in screening lung cancer among silicotic subjects? reply. Int J Tuberc Lung Dis. 15:1277–1278. 2011. View Article : Google Scholar : PubMed/NCBI | |
Blick CG, Nazir SA, Mallett S, et al: Evaluation of diagnostic strategies for bladder cancer using computed tomography (CT) urography, flexible cystoscopy and voided urine cytology: results for 778 patients from a hospital haematuria clinic. BJU Int. 110:84–94. 2012. View Article : Google Scholar | |
Ladabaum U and Song K: Projected national impact of colorectal cancer screening on clinical and economic outcomes and health services demand. Gastroenterology. 129:1151–1162. 2005. View Article : Google Scholar : PubMed/NCBI | |
Toloza EM, Harpole L and McCrory DC: Noninvasive staging of non-small cell lung cancer: a review of the current evidence. Chest. 123:137S–146S. 2003. View Article : Google Scholar : PubMed/NCBI | |
van Rhijn BW, van der Poel HG and van der Kwast TH: Urine markers for bladder cancer surveillance: a systematic review. Eur Urol. 47:736–748. 2005. | |
Thunnissen FB: Sputum examination for early detection of lung cancer. J Clin Pathol. 56:805–810. 2003. View Article : Google Scholar : PubMed/NCBI | |
Simon MA, Lokeshwar VB and Soloway MS: Current bladder cancer tests: unnecessary or beneficial? Crit Rev Oncol Hematol. 47:91–107. 2003. View Article : Google Scholar : PubMed/NCBI | |
Bassi P, De Marco V, De Lisa A, et al: Non-invasive diagnostic tests for bladder cancer: a review of the literature. Urol Int. 75:193–200. 2005. View Article : Google Scholar : PubMed/NCBI | |
Esquela-Kerscher A and Slack FJ: Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006. View Article : Google Scholar | |
Shenouda SK and Alahari SK: MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev. 28:369–378. 2009. View Article : Google Scholar : PubMed/NCBI | |
Patnaik SK, Kannisto E, Mallick R and Yendamuri S: Overexpression of the lung cancer-prognostic miR-146b microRNAs has a minimal and negative effect on the malignant phenotype of A549 lung cancer cells. PLoS One. 6:e223792011.PubMed/NCBI | |
Kong YW, Ferland-McCollough D, Jackson TJ and Bushell M: microRNAs in cancer management. Lancet Oncol. 13:E249–E258. 2012. View Article : Google Scholar : PubMed/NCBI | |
Calin GA and Croce CM: MicroRNA signatures in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Harfe BD: MicroRNAs in vertebrate development. Curr Opin Genet Dev. 15:410–415. 2005. View Article : Google Scholar | |
Kloosterman WP and Plasterk RHA: The diverse functions of microRNAs in animal development and disease. Dev Cell. 11:441–450. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mandke P, Wyatt N, Fraser J, Bates B, Berberich SJ and Markey MP: MicroRNA-34a modulates MDM4 expression via a target site in the open reading frame. PLoS One. 7:e420342012. View Article : Google Scholar : PubMed/NCBI | |
Lewis BP, Burge CB and Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120:15–20. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Ba Y, Ma L, et al: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 18:997–1006. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mitchell PS, Parkin RK, Kroh EM, et al: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA. 105:10513–10518. 2008. View Article : Google Scholar : PubMed/NCBI | |
Taylor DD and Gercel-Taylor C: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 110:13–21. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ho AS, Huang X, Cao HB, et al: Circulating miR-210 as a novel hypoxia marker in pancreatic cancer. Transl Oncol. 3:109–113. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wu CW, Ng SSM, Dong YJ, et al: Detection of miR-92a and miR-21 in stool samples as potential screening biomarkers for colorectal cancer and polyps. Gut. 61:739–745. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Todd NW, Liu ZQ, et al: Altered miRNA expression in sputum for diagnosis of non-small cell lung cancer. Lung Cancer. 67:170–176. 2010. View Article : Google Scholar : PubMed/NCBI | |
Brase JC, Wuttig D, Kuner R and Sultmann H: Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer. 9:3062010. View Article : Google Scholar : PubMed/NCBI | |
Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G and Bonnerot C: Exosomal-like vesicles are present in human blood plasma. Int Immunol. 17:879–887. 2005. View Article : Google Scholar : PubMed/NCBI | |
van Niel G, Porto-Carreiro I, Simoes S and Raposo G: Exosomes: a common pathway for a specialized function. J Biochem. 140:13–21. 2006.PubMed/NCBI | |
Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ and Lotvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–672. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hunter MP, Ismail N, Zhang X, et al: Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 3:e36942008. View Article : Google Scholar : PubMed/NCBI | |
Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD and Kloecker GH: Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 10:42–46. 2009. View Article : Google Scholar : PubMed/NCBI | |
Skog J, Wurdinger T, van Rijn S, et al: Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 10:1470–1476. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yu Z and Hecht NB: The DNA/RNA-binding protein, translin, binds microRNA122a and increases its in vivo stability. J Androl. 29:572–579. 2008. View Article : Google Scholar : PubMed/NCBI | |
Xie L, Chen X, Wang L, et al: Cell-free miRNAs may indicate diagnosis and docetaxel sensitivity of tumor cells in malignant effusions. BMC Cancer. 10:5912010. View Article : Google Scholar : PubMed/NCBI | |
Levine JS and Ahnen DJ: Clinical practice. Adenomatous polyps of the colon. N Engl J Med. 355:2551–2557. 2006. View Article : Google Scholar : PubMed/NCBI | |
Levin B, Lieberman DA, McFarland B, et al: Screening and surveillance for the early detection of colorectal cancer and adenomatous polyps, 2008: a joint guideline from the American Cancer Society, the US Multi-Society Task Force on Colorectal Cancer, and the American College of Radiology. Gastroenterology. 134:1570–1595. 2008. View Article : Google Scholar | |
Lieberman DA and Weiss DG: One-time screening for colorectal cancer with combined fecal occult-blood testing and examination of the distal colon. N Engl J Med. 345:555–560. 2001. View Article : Google Scholar : PubMed/NCBI | |
Imperiale TF, Ransohoff DF, Itzkowitz SH, Turnbull BA and Ross ME: Fecal DNA versus fecal occult blood for colorectal-cancer screening in an average-risk population. N Engl J Med. 351:2704–2714. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hewitson P, Glasziou P, Irwig L, Towler B and Watson E: Screening for colorectal cancer using the faecal occult blood test, Hemoccult. Cochrane Database Syst Rev. CD0012162007. View Article : Google Scholar | |
Cotton PB, Durkalski VL, Benoit PC, et al: Computed tomographic colonography (virtual colonoscopy): a multicenter comparison with standard colonoscopy for detection of colorectal neoplasia. JAMA. 291:1713–1719. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mulhall BP, Veerappan GR and Jackson JL: Meta-analysis: computed tomographic colonography. Ann Intern Med. 142:635–650. 2005. View Article : Google Scholar : PubMed/NCBI | |
Johnson CD, Chen MH, Toledano AY, et al: Accuracy of CT colonography for detection of large adenomas and cancers. New Engl J Med. 359:1207–1217. 2008. View Article : Google Scholar : PubMed/NCBI | |
Coady-Fariborzian L, Angel LP and Procaccino JA: Perforated colon secondary to virtual colonoscopy: report of a case. Dis Colon Rectum. 47:1247–1249. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kanaoka S, Yoshida K, Miura N, Sugimura H and Kajimura M: Potential usefulness of detecting cyclooxygenase 2 messenger RNA in feces for colorectal cancer screening. Gastroenterology. 127:422–427. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ahlquist DA, Sargent DJ, Loprinzi CL, et al: Stool DNA and occult blood testing for screen detection of colorectal neoplasia. Ann Intern Med. 149:441–450. W4812008. View Article : Google Scholar : PubMed/NCBI | |
Brand RE, Ross ME and Shuber AP: Reproducibility of a multitarget stool-based DNA assay for colorectal cancer detection. Am J Gastroenterol. 99:1338–1341. 2004. View Article : Google Scholar : PubMed/NCBI | |
Calistri D, Rengucci C, Bocchini R, Saragoni L, Zoli W and Amadori D: Fecal multiple molecular tests to detect colorectal cancer in stool. Clin Gastroenterol Hepatol. 1:377–383. 2003. View Article : Google Scholar : PubMed/NCBI | |
Yu YJ, Majumdar AP, Nechvatal JM, et al: Exfoliated cells in stool: a source for reverse transcription-PCR-based analysis of biomarkers of gastrointestinal cancer. Cancer Epidemiol Biomarkers Prev. 17:455–458. 2008.PubMed/NCBI | |
Zauber AG, Levin TR, Jaffe CC, Galen BA, Ransohoff DF and Brown ML: Implications of new colorectal cancer screening technologies for primary care practice. Med Care. 46:S138–S146. 2008. View Article : Google Scholar : PubMed/NCBI | |
Aslam MI, Taylor K, Pringle JH and Jameson JS: MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg. 96:702–710. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ahmed FE, Jeffries CD, Vos PW, et al: Diagnostic microRNA markers for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue. Cancer Genomics Proteomics. 6:281–295. 2009.PubMed/NCBI | |
Link A, Balaguer F, Shen Y, et al: Fecal MicroRNAs as novel biomarkers for colon cancer screening. Cancer Epidemiol Biomarkers Prev. 19:1766–1774. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kalimutho M, Del Vecchio Blanco G, Di Cecilia S, et al: Differential expression of miR-144* as a novel fecal-based diagnostic marker for colorectal cancer. J Gastroenterol. 46:1391–1402. 2011. | |
Koga Y, Yasunaga M, Takahashi A, et al: MicroRNA expression profiling of exfoliated colonocytes isolated from feces for colorectal cancer screening. Cancer Prev Res. 3:1435–1442. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li JM, Zhao RH, Li ST, et al: Down-regulation of fecal miR-143 and miR-145 as potential markers for colorectal cancer. Saudi Med J. 33:24–29. 2012.PubMed/NCBI | |
Kalimutho M, Di Cecilia S, Blanco GD, et al: Epigenetically silenced miR-34b/c as a novel faecal-based screening marker for colorectal cancer. Br J Cancer. 104:1770–1778. 2011. View Article : Google Scholar : PubMed/NCBI | |
Greenlee RT, Hill-Harmon MB, Murray T and Thun M: Cancer statistics, 2001. CA Cancer J Clin. 51:15–36. 2001. View Article : Google Scholar | |
Xing LX, Todd NW, Yu L, Fang HB and Jiang F: Early detection of squamous cell lung cancer in sputum by a panel of microRNA markers. Modern Pathol. 23:1157–1164. 2010. View Article : Google Scholar : PubMed/NCBI | |
Akira M: High-resolution CT in the evaluation of occupational and environmental disease. Radiol Clin North Am. 40:43–59. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bastarrika G, Garcia-Velloso MJ, Lozano MD, et al: Early lung cancer detection using spiral computed tomography and positron emission tomography. Am J Respir Crit Care Med. 171:1378–1383. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gohagan JK, Marcus PM, Fagerstrom RM, et al: Final results of the Lung Screening Study, a randomized feasibility study of spiral CT versus chest X-ray screening for lung cancer. Lung Cancer. 47:9–15. 2005. View Article : Google Scholar : PubMed/NCBI | |
Swensen SJ, Jett JR, Hartman TE, et al: Lung cancer screening with CT: Mayo Clinic experience. Radiology. 226:756–761. 2003. View Article : Google Scholar : PubMed/NCBI | |
Koga H, Eguchi K, Shinkai T, et al: Preliminary evaluation of the new tumor marker, CYFRA 21-1, in lung cancer patients. Jpn J Clin Oncol. 24:263–268. 1994.PubMed/NCBI | |
Sun S, Schiller JH and Gazdar AF: Lung cancer in never smokers: a different disease. Nat Rev Cancer. 7:778–790. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hirsch FR, Franklin WA, Gazdar AF and Bunn PA Jr: Early detection of lung cancer: clinical perspectives of recent advances in biology and radiology. Clin Cancer Res. 7:5–22. 2001.PubMed/NCBI | |
Hassanein M, Callison JC, Callaway-Lane C, Aldrich MC, Grogan EL and Massion PP: The state of molecular biomarkers for the early detection of lung cancer. Cancer Prev Res. 5:992–1006. 2012. View Article : Google Scholar : PubMed/NCBI | |
Belinsky SA: Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer. 4:707–717. 2004. View Article : Google Scholar : PubMed/NCBI | |
Castro M, Grau L, Puerta P, et al: Multiplexed methylation profiles of tumor suppressor genes and clinical outcome in lung cancer. J Transl Med. 8:862010. View Article : Google Scholar : PubMed/NCBI | |
Halling KC, Rickman OB, Kipp BR, Harwood AR, Doerr CH and Jett JR: A comparison of cytology and fluorescence in situ hybridization for the detection of lung cancer in bronchoscopic specimens. Chest. 130:694–701. 2006. View Article : Google Scholar : PubMed/NCBI | |
Beane J, Sebastiani P, Whitfield TH, et al: A prediction model for lung cancer diagnosis that integrates genomic and clinical features. Cancer Prev Res. 1:56–64. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yanaihara N, Caplen N, Bowman E, et al: Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 9:189–198. 2006. View Article : Google Scholar : PubMed/NCBI | |
Greenberg AK, Rimal B, Felner K, et al: S-adenosylmethionine as a biomarker for the early detection of lung cancer. Chest. 132:1247–1252. 2007. View Article : Google Scholar : PubMed/NCBI | |
Showe MK, Vachani A, Kossenkov AV, et al: Gene expression profiles in peripheral blood mononuclear cells can distinguish patients with non-small cell lung cancer from patients with nonmalignant lung disease. Cancer Res. 69:9202–9210. 2009. View Article : Google Scholar | |
Lai CY, Yu SL, Hsieh MH, et al: MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One. 6:e216352011. View Article : Google Scholar : PubMed/NCBI | |
Peck K, Sher YP, Shih JY, Roffler SR, Wu CW and Yang PC: Detection and quantitation of circulating cancer cells in the peripheral blood of lung cancer patients. Cancer Res. 58:2761–2765. 1998.PubMed/NCBI | |
van der Drift MA, Prinsen CFM, Hol BEA, et al: Can free DNA be detected in sputum of lung cancer patients? Lung Cancer. 61:385–390. 2008.PubMed/NCBI | |
Zhu S, Si ML, Wu H and Mo YY: MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1). J Biol Chem. 282:14328–14336. 2007. View Article : Google Scholar : PubMed/NCBI | |
Neragi-Miandoab S: Malignant pleural effusion, current and evolving approaches for its diagnosis and management. Lung Cancer. 54:1–9. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Lv M, Shen S, et al: Cell-free microRNA expression profiles in malignant effusion associated with patient survival in non-small cell lung cancer. PLoS One. 7:e432682012. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Hong YS, Ryu JS and Chang JH: p53 and FHIT mutations and microsatellite alterations in malignancy-associated pleural effusion. Lung Cancer. 44:33–42. 2004. View Article : Google Scholar : PubMed/NCBI | |
Spector M and Pollak JS: Management of malignant pleural effusions. Semin Respir Crit Care Med. 29:405–413. 2008. View Article : Google Scholar : PubMed/NCBI | |
Topolcan O, Holubec L, Polivkova V, et al: Tumor markers in pleural effusions. Anticancer Res. 27:1921–1924. 2007.PubMed/NCBI | |
Katayama H, Hiraki A, Aoe K, et al: Aberrant promoter methylation in pleural fluid DNA for diagnosis of malignant pleural effusion. Int J Cancer. 120:2191–2195. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Qian X, Wang Z, et al: Detection of cell-free BIRC5 mRNA in effusions and its potential diagnostic value for differentiating malignant and benign effusions. Int J Cancer. 125:1921–1925. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nair VS, Maeda LS and Ioannidis JPA: Clinical outcome prediction by microRNAs in human cancer: a systematic review. J Natl Cancer Inst. 104:528–540. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jemal A, Siegel R, Xu J and Ward E: Cancer statistics, 2010. CA Cancer J Clin. 60:277–300. 2010. View Article : Google Scholar | |
Snowdon J, Boag S, Feilotter H, Izard J and Siemens DR: A pilot study of urinary microRNA as a biomarker for urothelial cancer. Can Urol Assoc J. 7:28–32. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yamada Y, Enokida H, Kojima S, et al: MiR-96 and miR-183 detection in urine serve as potential tumor markers of urothelial carcinoma: correlation with stage and grade, and comparison with urinary cytology. Cancer Sci. 102:522–529. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ratliff TL: Urine markers for bladder cancer surveillance: a systematic review. J Urol. 174:2065–2066. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sarosdy MF, Hudson MA, Ellis WJ, et al: Improved detection of recurrent bladder cancer using the Bard BTA stat Test. Urology. 50:349–353. 1997. View Article : Google Scholar : PubMed/NCBI | |
Carpinito GA, Stadler WM, Briggman JV, et al: Urinary nuclear matrix protein as a marker for transitional cell carcinoma of the urinary tract. J Urol. 156:1280–1285. 1996. View Article : Google Scholar : PubMed/NCBI | |
Fradet Y and Lockhard C: Performance characteristics of a new monoclonal antibody test for bladder cancer: ImmunoCyt™. Can J Urol. 4:400–405. 1997.PubMed/NCBI | |
Greenlee RT, Murray T, Bolden S and Wingo PA: Cancer statistics, 2000. CA Cancer J Clin. 50:7–33. 2000. View Article : Google Scholar | |
Wang G, Chan ESY, Kwan BCH, et al: Expression of microRNAs in the urine of patients with bladder cancer. Clin Genitourin Cancer. 10:106–113. 2012. View Article : Google Scholar : PubMed/NCBI | |
Roos PH and Jakubowski N: Methods for the discovery of low-abundance biomarkers for urinary bladder cancer in biological fluids. Bioanalysis. 2:295–309. 2010. View Article : Google Scholar : PubMed/NCBI | |
Puerta-Gil P, Garcia-Baquero R, Jia AY, et al: miR-143, miR-222, and miR-452 are useful as tumor stratification and noninvasive diagnostic biomarkers for bladder cancer. Am J Pathol. 180:1808–1815. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hanke M, Hoefig K, Merz H, et al: A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol. 28:655–661. 2010. View Article : Google Scholar : PubMed/NCBI | |
Veerla S, Lindgren D, Kvist A, et al: MiRNA expression in urothelial carcinomas: important roles of miR-10a, miR-222, miR-125b, miR-7 and miR-452 for tumor stage and metastasis, and frequent homozygous losses of miR-31. Int J Cancer. 124:2236–2242. 2009. View Article : Google Scholar : PubMed/NCBI | |
Han Y, Chen J, Zhao X, et al: MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS One. 6:e182862011. View Article : Google Scholar : PubMed/NCBI | |
Noguchi S, Mori T, Hoshino Y, et al: MicroRNA-143 functions as a tumor suppressor in human bladder cancer T24 cells. Cancer Lett. 307:211–220. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kassouf W, Black PC, Tuziak T, et al: Distinctive expression pattern of ErbB family receptors signifies an aggressive variant of bladder cancer. J Urol. 179:353–358. 2008. View Article : Google Scholar : PubMed/NCBI | |
Junttila TT, Laato M, Vahlberg T, et al: Identification of patients with transitional cell carcinoma of the bladder overexpressing ErbB2, ErbB3, or specific ErbB4 isoforms: real-time reverse transcription-PCR analysis in estimation of ErbB receptor status from cancer patients. Clin Cancer Res. 9:5346–5357. 2003. | |
Cissell KA and Deo SK: Trends in microRNA detection. Anal Bioanal Chem. 394:1109–1116. 2009. View Article : Google Scholar : PubMed/NCBI | |
de Planell-Saguer M and Rodicio MC: Analytical aspects of microRNA in diagnostics: a review. Anal Chim Acta. 699:134–152. 2011.PubMed/NCBI | |
Ach RA, Wang H and Curry B: Measuring microRNAs: comparisons of microarray and quantitative PCR measurements, and of different total RNA prep methods. BMC Biotechnol. 8:692008. View Article : Google Scholar : PubMed/NCBI | |
de Planell-Saguer M and Rodicio MC: Analytical aspects of microRNA in diagnostics: a review. Anal Chim Acta. 699:134–152. 2011.PubMed/NCBI | |
Sarver AL: Toward understanding the informatics and statistical aspects of micro-RNA profiling. J Cardiovasc Transl Res. 3:204–211. 2010. View Article : Google Scholar : PubMed/NCBI | |
Valoczi A, Hornyik C, Varga N, Burgyan J, Kauppinen S and Havelda Z: Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes. Nucleic Acids Res. 32:e1752004. View Article : Google Scholar : PubMed/NCBI | |
Pall GS, Codony-Servat C, Byrne J, Ritchie L and Hamilton A: Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by northern blot. Nucleic Acids Res. 35:e602007. View Article : Google Scholar : PubMed/NCBI | |
Varallyay E, Burgyan J and Havelda Z: MicroRNA detection by northern blotting using locked nucleic acid probes. Nat Protoc. 3:190–196. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chamnongpol S, Maroney PA and Nilsen TW: A rapid, quantitative assay for direct detection of microRNAs and other small RNAs using splinted ligation. Methods Mol Biol. 667:3–17. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cissell KA, Rahimi Y, Shrestha S, Hunt EA and Deo SK: Bioluminescence-based detection of microRNA, miR21 in breast cancer cells. Anal Chem. 80:2319–2325. 2008. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Ridzon DA, Broomer AJ, et al: Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33:e1792005. View Article : Google Scholar : PubMed/NCBI | |
Weaver S, Dube S, Mir A, et al: Taking qPCR to a higher level: analysis of CNV reveals the power of high throughput qPCR to enhance quantitative resolution. Methods. 50:271–276. 2010. View Article : Google Scholar : PubMed/NCBI | |
Raymond CK, Roberts BS, Garrett-Engele P, Lim LP and Johnson JM: Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. RNA. 11:1737–1744. 2005. View Article : Google Scholar : PubMed/NCBI | |
Neely LA, Patel S, Garver J, et al: A single-molecule method for the quantitation of microRNA gene expression. Nat Methods. 3:41–46. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kloosterman WP, Wienholds E, de Bruijn E, Kauppinen S and Plasterk RHA: In situ detection of miRNAs in animal embryos using LNA-modified oligonucteotide probes. Nat Methods. 3:27–29. 2006. View Article : Google Scholar : PubMed/NCBI | |
de Planell-Saguer M, Rodicio MC and Mourelatos Z: Rapid in situ codetection of noncoding RNAs and proteins in cells and formalin-fixed paraffin-embedded tissue sections without protease treatment. Nat Protoc. 5:1061–1073. 2010.PubMed/NCBI | |
Obernosterer G, Martinez J and Alenius M: Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections. Nat Protoc. 2:1508–1514. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nelson PT, Baldwin DA, Kloosterman WP, Kauppinen S, Plasterk RHA and Mourelatos Z: RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA. 12:187–191. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liu CG, Calin GA, Volinia S and Croce CM: MicroRNA expression profiling using microarrays. Nat Protoc. 3:563–578. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li W and Ruan KC: MicroRNA detection by microarray. Anal Bioanal Chem. 394:1117–1124. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nelson PT, Baldwin DA, Scearce LM, Oberholtzer JC, Tobias JW and Mourelatos Z: Microarray-based, high-throughput gene expression profiling of microRNAs. Nat Methods. 1:155–161. 2004. View Article : Google Scholar : PubMed/NCBI | |
Takada S and Mano H: Profiling of microRNA expression by mRAP. Nat Protoc. 2:3136–3145. 2007. View Article : Google Scholar : PubMed/NCBI | |
Volinia S, Calin GA, Liu CG, et al: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 103:2257–2261. 2006. View Article : Google Scholar : PubMed/NCBI | |
Weber JA, Baxter DH, Zhang SL, et al: The microRNA spectrum in 12 body fluids. Clin Chem. 56:1733–1741. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kanaan Z, Rai SN, Eichenberger MR, et al: Plasma miR-21: a potential diagnostic marker of colorectal cancer. Ann Surg. 256:544–551. 2012. View Article : Google Scholar : PubMed/NCBI | |
Li BS, Zhao YL, Guo G, et al: Plasma microRNAs, miR-223, miR-21 and miR-218, as novel potential biomarkers for gastric cancer detection. PLoS One. 7:e416292012. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Cui L, Ye G, et al: Gastric juice microRNA-421 is a new biomarker for screening gastric cancer. Tumour Biol. 33:2349–2355. 2012. View Article : Google Scholar : PubMed/NCBI | |
Janakiram NB and Rao CV: Molecular markers and targets for colorectal cancer prevention. Acta Pharmacol Sin. 29:1–20. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Wu WK, Wu CW, Sung JJ, Yu J and Ng SS: MicroRNA dysregulation in colorectal cancer: a clinical perspective. Br J Cancer. 104:893–898. 2011. View Article : Google Scholar : PubMed/NCBI |