1
|
Iltzsch MH, Kouni MH and Cha S: Kinetic
studies of thymidine phosphorylase from mouse liver. Biochemistry.
24:6799–6807. 1985. View Article : Google Scholar : PubMed/NCBI
|
2
|
Furukawa T, Yoshimura A, Sumizawa T,
Haraguchi M, Akiyama S, Fukui K, Ishizawa M and Yamada Y:
Angiogenic factor. Nature. 356:6681992. View Article : Google Scholar
|
3
|
Sumizawa T, Furukawa T, Haraguchi M,
Yoshimura A, Takeyasu A, Ishizawa M, Yamada Y and Akiyama S:
Thymidine phosphorylase activity associated with platelet-derived
endothelial cell growth factor. J Biochem. 114:9–14.
1993.PubMed/NCBI
|
4
|
Haraguchi M, Miyadera K, Uemura K,
Sumizawa T, Furukawa T, Yamada K, Akiyama S and Yamada Y:
Angiogenic activity of enzymes. Nature. 368:1981994. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ishikawa F, Miyazono K, Hellman U, Drexler
H, Wernstedt C, Hagiwara K, Usuki K, Takaku F, Risau W and Heldin
CH: Identification of angiogenic activity and the cloning and
expression of platelet-derived endothelial cell growth factor.
Nature. 338:557–562. 1989. View
Article : Google Scholar : PubMed/NCBI
|
6
|
Miyazono K, Okabe T, Urabe A, Takaku F and
Heldin CH: Purification and properties of an endothelial cell
growth factor from human platelets. J Biol Chem. 262:4098–4103.
1987.PubMed/NCBI
|
7
|
Miyadera K, Sumizawa T, Haraguchi M,
Yoshida H, Konstanty W, Yamada Y and Akiyama S: Role of thymidine
phosphorylase activity in the angiogenic effect of platelet-derived
endothelial cell growth factor/thymidine phosphorylase. Cancer Res.
55:1687–1690. 1995.PubMed/NCBI
|
8
|
Takebayashi Y, Akiyama S, Akiba S, Yamada
K, Miyadera K, Sumizawa T, Yamada Y, Murata F and Aikou T:
Clinicopathologic and prognostic significance of an angiogenic
factor, thymidine phosphorylase, in human colorectal carcinoma. J
Natl Cancer Inst. 88:1110–1117. 1996. View Article : Google Scholar : PubMed/NCBI
|
9
|
Takebayashi Y, Yamada K, Miyadera K,
Sumizawa T, Furukawa T, Kinoshita F, Aoki D, Okumura H, Yamada Y,
Akiyama S and Aikou T: The activity and expression of thymidine
phosphorylase in human solid tumours. Eur J Cancer. 32A:1227–1232.
1996. View Article : Google Scholar : PubMed/NCBI
|
10
|
Takebayashi Y, Miyadera K, Akiyama S,
Hokita S, Yamada K, Akiba S, Yamada Y, Sumizawa T and Aikou T:
Expression of thymidine phosphorylase in human gastric carcinoma.
Jpn J Cancer Res. 87:288–295. 1996. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kitazono M, Takebayashi Y, Ishitsuka K,
Takao S, Tani A, Furukawa T, Miyadera K, Yamada Y, Aikou T and
Akiyama S: Prevention of hypoxia-induced apoptosis by the
angiogenic factor thymidine phosphorylase. Biochem Biophys Res
Commun. 253:797–803. 1998. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ikeda R, Furukawa T, Kitazono M, Ishitsuka
K, Okumura H, Tani A, Sumizawa T, Haraguchi M, Komatsu M, Uchimiya
H, Ren XQ, Motoya T, Yamada K and Akiyama S: Molecular basis for
the inhibition of hypoxia-induced apoptosis by 2-deoxy-D-ribose.
Biochem Biophys Res Commun. 291:806–812. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Ikeda R, Che XF, Ushiyama M, Yamaguchi T,
Okumura H, Nakajima Y, Takeda Y, Shibayama Y, Furukawa T, Yamamoto
M, Haraguchi M, Sumizawa T, Yamada K and Akiyama S:
2-Deoxy-D-ribose inhibits hypoxia-induced apoptosis by suppressing
the phosphorylation of p38 MAPK. Biochem Biophys Res Commun.
342:280–285. 2006. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ikeda R, Tajitsu Y, Iwashita K, Che XF,
Yoshida K, Ushiyama M, Furukawa T, Komatsu M, Yamaguchi T,
Shibayama Y, Yamamoto M, Zhao HY, Arima J, Takeda Y, Akiyama S and
Yamada K: Thymidine phosphorylase inhibits the expression of
proapoptotic protein BNIP3. Biochem Biophys Res Commun.
370:220–224. 2008.PubMed/NCBI
|
15
|
Wang GL, Jiang BH, Rue EA and Semenza GL:
Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS
heterodimer regulated by cellular O2 tension. Proc Natl
Acad Sci USA. 92:5510–5514. 1995.PubMed/NCBI
|
16
|
Jiang BH, Semenza GL, Bauer C and Marti
HH: Hypoxia-inducible factor 1 levels vary exponentially over a
physiologically relevant range of O2 tension. Am J
Physiol. 271:C1172–C1180. 1996.PubMed/NCBI
|
17
|
Salceda S and Caro J: Hypoxia-inducible
factor 1α (HIF1α) protein is rapidly degraded by the
ubiquitin-proteasome system under normoxic conditions. Its
stabilization by hypoxia depends on redox-induced changes. J Biol
Chem. 272:22642–22647. 1997.
|
18
|
Semenza GL, Jiang BH, Leung SW, Passantino
R, Concordet JP, Maire P and Giallongo A: Hypoxia response elements
in the aldolase A, enolase 1, and lactate dehydrogenase A gene
promoters contain essential binding sites for hypoxia-inducible
factor 1. J Biol Chem. 271:32529–32537. 1996.
|
19
|
Ebert BL and Bunn HF: Regulation of
transcription by hypoxia requires a multiprotein complex that
includes hypoxia-inducible factor 1, an adjacent transcription
factor, and p300/CREB binding protein. Mol Cell Biol. 18:4089–4096.
1998.
|
20
|
Carmeliet P, Dor Y, Herbert JM, Fukumura
D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R,
Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D and
Keshert E: Role of HIF-1α in hypoxia-mediated apoptosis, cell
proliferation and tumour angiogenesis. Nature. 394:485–490.
1998.
|
21
|
Kothari S, Cizeau J, McMillan WE, Israels
SJ, Bailes M, Ens K, Kirshenbaum LA and Gibson SB: BNIP3 plays a
role in hypoxic cell death in human epithelial cells that is
inhibited by growth factors EGF and IGF. Oncogene. 22:4734–4744.
2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Graham RM, Frazier DP, Thompson JW, Haliko
S, Li H, Wasserlauf BJ, Spiga MG, Bishopric NH and Webster KA: A
unique pathway of cardiac myocyte death caused by hypoxia-acidosis.
J Exp Biol. 207:3189–3200. 2004. View Article : Google Scholar : PubMed/NCBI
|
23
|
Chen G, Ray R, Dubik D, Shi L, Cizeau J,
Bleackley RC, Saxena S, Gietz RD and Greenberg AH: The E1B
19K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein
that activates apoptosis. J Exp Med. 186:1975–1983. 1997.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Chen G, Cizeau J, Velde CV, Park JH, Bozek
G, Bolton J, Shi L, Dubik D and Greenberg A: Nix and Nip3 form a
subfamily of pro-apoptotic mitochondrial proteins. J Biol Chem.
274:7–10. 1999. View Article : Google Scholar : PubMed/NCBI
|
25
|
Velde CV, Cizeau J, Dubik D, Alimonti J,
Brown T, Israels S, Hakem R and Greenberg AH: BNIP3 and genetic
control of necrosis-like cell death through the mitochondrial
permeability transition pore. Mol Cell Biol. 20:5454–5468. 2000.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Regula KM, Ens K and Kirshenbaum LA:
Inducible expression of BNIP3 provokes mitochondrial defects and
hypoxia-mediated cell death of ventricular myocytes. Circ Res.
91:226–231. 2002. View Article : Google Scholar : PubMed/NCBI
|
27
|
Huang LE, Gu J, Schau M and Bunn HF:
Regulation of hypoxia-inducible factor 1alpha is mediated by an
O2 dependent degradation domain via the ubiquitin
proteasome pathway. Proc Natl Acad Sci USA. 95:7987–7992. 1998.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Bruick RK and McKnight SL: A conserved
family of prolyl-4-hydroxylases that modify HIF. Science.
294:1337–1340. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Epstein AC, Gleadle JM, McNeill LA,
Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI,
Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R,
Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ and Ratcliffe PJ:
C. elegans EGL9 and mammalian homologs define a family of
dioxygenases that regulate HIF by prolyl hydroxylation. Cell.
107:43–54. 2001. View Article : Google Scholar
|
30
|
Ivan M, Kondo K, Yang H, Kim W, Valiando
J, Ohh M, Salic A, Asara JM, Lane WS and Kaelin WG Jr: HIFα
targeted for VHL-mediated destruction by proline hydroxylation:
implications for O2 sensing. Science. 292:464–468.
2001.
|
31
|
Jaakkola P, Mole DR, Tian YM, Wilson MI,
Gielbert J, Gaskell SJ, von Kriegsheim A, Hebestreit HF, Mukherji
M, Schofield CJ, Maxwell PH, Pugh CW and Ratcliffe PJ: Targeting of
HIF-α to the von Hippel-Lindau ubiquitylation complex by
O2-regulated prolyl hydroxylation. Science. 292:468–472.
2001.
|
32
|
Berra E, Benizri E, Ginouves A, Volmat V,
Roux D and Pouyssegur J: HIF prolyl-hydroxylase 2 is the key oxygen
sensor setting low steady-state levels of HIF-1α in normoxia. EMBO
J. 22:4082–4090. 2003.PubMed/NCBI
|
33
|
Feron O: Pyruvate into lactate and back:
from the Warburg effect to symbiotic energy fuel exchange in cancer
cells. Radiother Oncol. 92:329–333. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
DeBerardinis RJ, Mancuso A, Daikhin E,
Nissim I, Yudkoff M, Wehrli S and Thompson CB: Beyond aerobic
glycolysis: transformed cells can engage in glutamine metabolism
that exceeds the requirement for protein and nucleotide synthesis.
Proc Natl Acad Sci USA. 104:19345–19350. 2007. View Article : Google Scholar
|