1
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
2
|
Medes G, Thomas A and Weinhouse S:
Metabolism of neoplastic tissue. IV A study of lipid synthesis in
neoplastic tissue slices in vitro. Cancer Res. 13:27–29.
1953.PubMed/NCBI
|
3
|
Horton JD: Sterol regulatory
element-binding proteins: transcriptional activators of lipid
synthesis. Biochem Soc Trans. 30:1091–1095. 2002. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang X, Sato R, Brown MS, Hua X and
Goldstein JL: SREBP-1, a membrane-bound transcription factor
released by sterol-regulated proteolysis. Cell. 77:53–62. 1994.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Horton JD and Shimomura I: Sterol
regulatory element-binding proteins: activators of cholesterol and
fatty acid biosynthesis. Curr Opin Lipidol. 10:143–150. 1999.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Brown MS and Goldstein JL: The SREBP
pathway: regulation of cholesterol metabolism by proteolysis of a
membrane-bound transcription factor. Cell. 89:331–340. 1997.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Osborne TF: Sterol regulatory
element-binding proteins (SREBPs): key regulators of nutritional
homeostasis and insulin action. J Biol Chem. 275:32379–32382. 2000.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Edwards PA, Tabor D, Kast HR and
Venkateswaran A: Regulation of gene expression by SREBP and SCAP.
Biochim Biophys Acta. 1529:103–113. 2000. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang YA, Morin PJ, Han WF, Chen T, Bornman
DM, Gabrielson EW and Pizer ES: Regulation of fatty acid synthase
expression in breast cancer by sterol regulatory element binding
protein-1c. Exp Cell Res. 282:132–137. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Li JN, Mahmoud MA, Han WF, Ripple M and
Pizer ES: Sterol regulatory element-binding protein-1 participates
in the regulation of fatty acid synthase expression in colorectal
neoplasia. Exp Cell Res. 261:159–165. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Swinnen JV, Heemers H, van de Sande T, de
Schrijver E, Brusselmans K, Heyns W and Verhoeven G: Androgens,
lipogenesis and prostate cancer. J Steroid Biochem Mol Biol.
92:273–279. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Calvisi DF, Wang C, Ho C, Ladu S, Lee SA,
Mattu S, Destefanis G, Delogu S, Zimmermann A, Ericsson J,
Brozzetti S, Staniscia T, Chen X, Dombrowski F and Evert M:
Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling,
promotes development of human hepatocellular carcinoma.
Gastroenterology. 140:1071–1083. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Shenhua X, Lijuan Q, Hanzhou N, Xinghao N,
Chihong Z, Gu Z, Weifang D and Yongliang G: Establishment of a
highly metastatic human ovarian cancer cell line (HO-8910PM) and
its characterization. J Exp Clin Cancer Res. 18:233–239.
1999.PubMed/NCBI
|
14
|
Yamashita T, Honda M, Takatori H, Nishino
R, Minato H, Takamura H, Ohta T and Kaneko S: Activation of
lipogenic pathway correlates with cell proliferation and poor
prognosis in hepatocellular carcinoma. J Hepatol. 50:100–110. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Swinnen JV, Brusselmans K and Verhoeven G:
Increased lipogenesis in cancer cells: new players, novel targets.
Curr Opin Clin Nutr Metab Care. 9:358–365. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Mukherjee A, Wu J, Barbour S and Fang X:
Lysophosphatidic acid activates lipogenic pathways and de novo
lipid synthesis in ovarian cancer cells. J Biol Chem.
287:24990–25000. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Uddin S, Jehan Z, Ahmed M, Alyan A,
Al-Dayel F, Hussain A, Bavi P and Al-Kuraya KS: Overexpression of
fatty acid synthase in Middle Eastern epithelial ovarian carcinoma
activates AKT and its inhibition potentiates cisplatin-induced
apoptosis. Mol Med. 17:635–645. 2011. View Article : Google Scholar
|
18
|
Menendez JA and Lupu R: Fatty acid
synthase and the lipogenic phenotype in cancer pathogenesis. Nat
Rev Cancer. 7:763–777. 2007. View
Article : Google Scholar : PubMed/NCBI
|
19
|
Porstmann T, Santos CR, Griffiths B, Cully
M, Wu M, Leevers S, Griffiths JR, Chung YL and Schulze A: SREBP
activity is regulated by mTORC1 and contributes to Akt-dependent
cell growth. Cell Metab. 8:224–236. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Franke TF, Hornik CP, Segev L, Shostak GA
and Sugimoto C: PI3K/Akt and apoptosis: size matters. Oncogene.
22:8983–8998. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Krycer JR, Sharpe LJ, Luu W and Brown AJ:
The Akt-SREBP nexus: cell signaling meets lipid metabolism. Trends
Endocrinol Metab. 21:268–276. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Migita T, Narita T, Nomura K, Miyagi E,
Inazuka F, Matsuura M, Ushijima M, Mashima T, Seimiya H, Satoh Y,
Okumura S, Nakagawa K and Ishikawa Y: ATP citrate lyase: activation
and therapeutic implications in non-small cell lung cancer. Cancer
Res. 68:8547–8554. 2008. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zu XY, Zhang QH, Liu JH, Cao RX, Zhong J,
Yi GH, Quan ZH and Pizzorno G: ATP citrate lyase inhibitors as
novel cancer therapeutic agents. Recent Pat Anticancer Drug Discov.
7:154–167. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Luo DX, Tong DJ, Rajput S, Wang C, Liao
DF, Cao D and Maser E: Targeting acetyl-CoA carboxylases: small
molecular inhibitors and their therapeutic potential. Recent Pat
Anticancer Drug Discov. 7:168–184. 2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang C, Rajput S, Watabe K, Liao DF and
Cao D: Acetyl-CoA carboxylase-a as a novel target for cancer
therapy. Front Biosci. 2:515–526. 2010. View
Article : Google Scholar : PubMed/NCBI
|
26
|
Tong L and Harwood HJ Jr: Acetyl-coenzyme
A carboxylases: versatile targets for drug discovery. J Cell
Biochem. 99:1476–1488. 2006. View Article : Google Scholar : PubMed/NCBI
|
27
|
Roongta UV, Pabalan JG, Wang X, Ryseck RP,
Fargnoli J, Henley BJ, Yang WP, Zhu J, Madireddi MT, Lawrence RM,
Wong TW and Rupnow BA: Cancer cell dependence on unsaturated fatty
acids implicates stearoyl-CoA desaturase as a target for cancer
therapy. Mol Cancer Res. 9:1551–1561. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Igal RA: Stearoyl-CoA desaturase-1: a
novel key player in the mechanisms of cell proliferation,
programmed cell death and transformation to cancer. Carcinogenesis.
31:1509–1515. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Fritz V, Benfodda Z, Rodier G, Henriquet
C, Iborra F, Avances C, Allory Y, de la Taille A, Culine S, Blancou
H, Cristol JP, Michel F, Sardet C and Fajas L: Abrogation of de
novo lipogenesis by stearoyl-CoA desaturase 1 inhibition interferes
with oncogenic signaling and blocks prostate cancer progression in
mice. Mol Cancer Ther. 9:1740–1754. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu H, Liu JY, Wu X and Zhang JT:
Biochemistry, molecular biology, and pharmacology of fatty acid
synthase, an emerging therapeutic target and diagnosis/prognosis
marker. Int J Biochem Mol Biol. 1:69–89. 2010.PubMed/NCBI
|
31
|
Mashima T, Seimiya H and Tsuruo T: De novo
fatty-acid synthesis and related pathways as molecular targets for
cancer therapy. Br J Cancer. 100:1369–1372. 2009. View Article : Google Scholar : PubMed/NCBI
|