1
|
Grade M, Hormann P, Becker S, et al: Gene
expression profiling reveals a massive, aneuploidy-dependent
transcriptional deregulation and distinct differences between lymph
node-negative and lymph node-positive colon carcinomas. Cancer Res.
67:41–56. 2007. View Article : Google Scholar
|
2
|
Hao JM, Chen JZ, Sui HM, et al: A
five-gene signature as a potential predictor of metastasis and
survival in colorectal cancer. J Pathol. 220:475–489.
2010.PubMed/NCBI
|
3
|
Meding S, Balluff B, Elsner M, et al:
Tissue-based proteomics reveals FXYD3, S100A11 and GSTM3 as novel
markers for regional lymph node metastasis in colon cancer. J
Pathol. 228:459–470. 2012.PubMed/NCBI
|
4
|
Gunderson LL, Jessup JM, Sargent DJ,
Greene FL and Stewart AK: Revised TN categorization for colon
cancer based on national survival outcomes data. J Clin Oncol.
28:264–271. 2010. View Article : Google Scholar : PubMed/NCBI
|
5
|
Weitz J, Koch M, Debus J, Hohler T, Galle
PR and Buchler MW: Colorectal cancer. Lancet. 365:153–165. 2005.
View Article : Google Scholar
|
6
|
Nishida K, Mine S, Utsunomiya T, et al:
Global analysis of altered gene expressions during the process of
esophageal squamous cell carcinogenesis in the rat: a study
combined with a laser microdissection and a cDNA microarray. Cancer
Res. 65:401–409. 2005.PubMed/NCBI
|
7
|
Quackenbush J: Microarray data
normalization and transformation. Nat Genet. 32(Suppl): 496–501.
2002. View
Article : Google Scholar
|
8
|
Brazma A, Hingamp P, Quackenbush J, et al:
Minimum information about a microarray experiment (MIAME)-toward
standards for microarray data. Nat Genet. 29:365–371. 2001.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Niida A, Smith AD, Imoto S, Aburatani H,
Zhang MQ and Akiyama T: Gene set-based module discovery in the
breast cancer transcriptome. BMC Bioinformatics. 10:712009.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Esposito F, Tornincasa M, Federico A,
Chiappetta G, Pierantoni GM and Fusco A: High-mobility group A1
protein inhibits p53-mediated intrinsic apoptosis by interacting
with Bcl-2 at mitochondria. Cell Death Dis. 3:e3832012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kwon HC, Kim SH, Roh MS, et al: Gene
expression profiling in lymph node-positive and lymph node-negative
colorectal cancer. Dis Colon Rectum. 47:141–152. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Koehler A, Bataille F, Schmid C, et al:
Gene expression profiling of colorectal cancer and metastases
divides tumours according to their clinicopathological stage. J
Pathol. 204:65–74. 2004. View Article : Google Scholar
|
13
|
Evan GI and Vousden KH: Proliferation,
cell cycle and apoptosis in cancer. Nature. 411:342–348. 2001.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
15
|
Acloque H, Adams MS, Fishwick K,
Bronner-Fraser M and Nieto MA: Epithelial-mesenchymal transitions:
the importance of changing cell state in development and disease. J
Clin Invest. 119:1438–1449. 2009. View
Article : Google Scholar : PubMed/NCBI
|
16
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer, and cancer stem cells. Nature.
414:105–111. 2001. View
Article : Google Scholar : PubMed/NCBI
|
17
|
Ailles LE and Weissman IL: Cancer stem
cells in solid tumors. Curr Opin Biotechnol. 18:460–466. 2007.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Grosschedl R, Giese K and Pagel J: HMG
domain proteins: architectural elements in the assembly of
nucleoprotein structures. Trends Genet. 10:94–100. 1994. View Article : Google Scholar : PubMed/NCBI
|
19
|
Reeves R and Nissen MS: The
A.T-DNA-binding domain of mammalian high mobility group I
chromosomal proteins. A novel peptide motif for recognizing DNA
structure. J Biol Chem. 265:8573–8582. 1990.PubMed/NCBI
|
20
|
Reeves R: Structure and function of the
HMGI(Y) family of architectural transcription factors. Environ
Health Perspect. 108(Suppl 5): 803–809. 2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zhou X, Benson KF, Ashar HR and Chada K:
Mutation responsible for the mouse pygmy phenotype in the
developmentally regulated factor HMGI-C. Nature. 376:771–774. 1995.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Chiappetta G, Avantaggiato V, Visconti R,
et al: High level expression of the HMGI (Y) gene during embryonic
development. Oncogene. 13:2439–2446. 1996.PubMed/NCBI
|
23
|
Chiappetta G, Bandiera A, Berlingieri MT,
et al: The expression of the high mobility group HMGI (Y) proteins
correlates with the malignant phenotype of human thyroid
neoplasias. Oncogene. 10:1307–1314. 1995.PubMed/NCBI
|
24
|
Chiappetta G, Tallini G, De Biasio MC, et
al: Detection of high mobility group I HMGI(Y) protein in the
diagnosis of thyroid tumors: HMGI(Y) expression represents a
potential diagnostic indicator of carcinoma. Cancer Res.
58:4193–4198. 1998.
|
25
|
Fedele M, Bandiera A, Chiappetta G, et al:
Human colorectal carcinomas express high levels of high mobility
group HMGI(Y) proteins. Cancer Res. 56:1896–1901. 1996.PubMed/NCBI
|
26
|
Abe N, Watanabe T, Sugiyama M, et al:
Determination of high mobility group I(Y) expression level in
colorectal neoplasias: a potential diagnostic marker. Cancer Res.
59:1169–1174. 1999.PubMed/NCBI
|
27
|
Chiappetta G, Manfioletti G, Pentimalli F,
et al: High mobility group HMGI(Y) protein expression in human
colorectal hyperplastic and neoplastic diseases. Int J Cancer.
91:147–151. 2001. View Article : Google Scholar : PubMed/NCBI
|
28
|
Tamimi Y, van der Poel HG, Denyn MM, et
al: Increased expression of high mobility group protein I(Y) in
high grade prostatic cancer determined by in situ hybridization.
Cancer Res. 53:5512–5516. 1993.PubMed/NCBI
|
29
|
Abe N, Watanabe T, Izumisato Y, et al:
Diagnostic significance of high mobility group I(Y) protein
expression in intraductal papillary mucinous tumors of the
pancreas. Pancreas. 25:198–204. 2002. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bandiera A, Bonifacio D, Manfioletti G, et
al: Expression of HMGI(Y) proteins in squamous intraepithelial and
invasive lesions of the uterine cervix. Cancer Res. 58:426–431.
1998.PubMed/NCBI
|
31
|
Masciullo V, Baldassarre G, Pentimalli F,
et al: HMGA1 protein over-expression is a frequent feature of
epithelial ovarian carcinomas. Carcinogenesis. 24:1191–1198. 2003.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Chiappetta G, Botti G, Monaco M, et al:
HMGA1 protein overexpression in human breast carcinomas:
correlation with ErbB2 expression. Clin Cancer Res. 10:7637–7644.
2004. View Article : Google Scholar : PubMed/NCBI
|
33
|
Pomeroy SL, Tamayo P, Gaasenbeek M, et al:
Prediction of central nervous system embryonal tumour outcome based
on gene expression. Nature. 415:436–442. 2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ben-Porath I, Thomson MW, Carey VJ, et al:
An embryonic stem cell-like gene expression signature in poorly
differentiated aggressive human tumors. Nat Genet. 40:499–507.
2008. View
Article : Google Scholar : PubMed/NCBI
|
35
|
Mu G, Liu H, Zhou F, et al: Correlation of
overexpression of HMGA1 and HMGA2 with poor tumor differentiation,
invasion, and proliferation associated with let-7 down-regulation
in retinoblastomas. Hum Pathol. 41:493–502. 2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Balcerczak M, Pasz-Walczak G, Balcerczak
E, Wojtylak M, Kordek R and Mirowski M: HMGI(Y) gene expression in
colorectal cancer: comparison with some histological typing,
grading, and clinical staging. Pathol Res Pract. 199:641–646. 2003.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Pierantoni GM, Rinaldo C, Mottolese M, et
al: High-mobility group A1 inhibits p53 by cytoplasmic
relocalization of its proapoptotic activator HIPK2. J Clin Invest.
117:693–702. 2007. View Article : Google Scholar : PubMed/NCBI
|
38
|
Esposito F, Tornincasa M, Chieffi P, De
Martino I, Pierantoni GM and Fusco A: High-mobility group A1
proteins regulate p53-mediated transcription of Bcl-2 gene. Cancer
Res. 70:5379–5388. 2010. View Article : Google Scholar : PubMed/NCBI
|
39
|
Belton A, Gabrovsky A, Bae YK, et al:
HMGA1 induces intestinal polyposis in transgenic mice and drives
tumor progression and stem cell properties in colon cancer cells.
PloS One. 7:e300342012. View Article : Google Scholar : PubMed/NCBI
|
40
|
Morson BC, Whiteway JE, Jones EA, Macrae
FA and Williams CB: Histopathology and prognosis of malignant
colorectal polyps treated by endoscopic polypectomy. Gut.
25:437–444. 1984. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kyzer S, Begin LR, Gordon PH and Mitmaker
B: The care of patients with colorectal polyps that contain
invasive adenocarcinoma. Endoscopic polypectomy or colectomy?
Cancer. 70:2044–2050. 1992. View Article : Google Scholar : PubMed/NCBI
|
42
|
Minamoto T, Mai M, Ogino T, et al: Early
invasive colorectal carcinomas metastatic to the lymph node with
attention to their nonpolypoid development. Am J Gastroenterol.
88:1035–1039. 1993.PubMed/NCBI
|
43
|
Nusko G, Mansmann U, Partzsch U, et al:
Invasive carcinoma in colorectal adenomas: multivariate analysis of
patient and adenoma characteristics. Endoscopy. 29:626–631. 1997.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Cooper HS: Surgical pathology of
endoscopically removed malignant polyps of the colon and rectum. Am
J Surg Pathol. 7:613–623. 1983. View Article : Google Scholar : PubMed/NCBI
|
45
|
Colacchio TA, Forde KA and Scantlebury VP:
Endoscopic polypectomy: inadequate treatment for invasive
colorectal carcinoma. Ann Surg. 194:704–707. 1981. View Article : Google Scholar : PubMed/NCBI
|