1
|
Ginsburg OM and Love RR: Breast cancer: a
neglected disease for the majority of affected women worldwide.
Breast J. 17:289–295. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Lorico A and Rappa G: Phenotypic
heterogeneity of breast cancer stem cells. J Oncol.
2011:1350392011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Misra Y, Bentley PA, Bond JP, Tighe S,
Hunter T and Zhao FQ: Mammary gland morphological and gene
expression changes underlying pregnancy protection of breast cancer
tumorigenesis. Physiol Genomics. 44:76–88. 2012. View Article : Google Scholar : PubMed/NCBI
|
4
|
Bray F, McCarron P and Parkin DM: The
changing global patterns of female breast cancer incidence and
mortality. Breast Cancer Res. 6:229–239. 2004. View Article : Google Scholar : PubMed/NCBI
|
5
|
Perou CM: Molecular stratification of
triple-negative breast cancers. Oncologist. 16(Suppl 1): S61–S70.
2011. View Article : Google Scholar
|
6
|
Liu S and Wicha MS: Targeting breast
cancer stem cells. J Clin Oncol. 28:4006–4401. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Tremblay AM and Giguère V: The NR3B
subgroup: an ovERRview. Nucl Recept Signal. 5:1–11. 2007.
|
8
|
Hartlerode A, Odate S, Shim I, Brown J and
Scully R: Cell cycle-dependent induction of homologous
recombination by a tightly regulated I-SceI fusion protein. PloS
One. 6:e165012011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Vezina C, Kudelski A and Sehgal SN:
Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of
the producing streptomycete and isolation of the active principle.
J Antibiot (Tokyo). 28:721–726. 1975. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cunningham JT, Rodgers JT, Arlow DH,
Vazquez F, Mootha VK and Puigserver P: mTOR controls mitochondrial
oxidative function through a YY1-PGC-1alpha transcriptional
complex. Nature. 450:736–740. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Kelly DP and Scarpulla RC: Transcriptional
regulatory circuits controlling mitochondrial biogenesis and
function. Genes Dev. 18:357–368. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Spiegelman BM: Transcriptional control of
mitochondrial energy metabolism through the PGC1 coactivators.
Novartis Found Symp. 287:60–69. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Arany Z, Lebrasseur N, Morris C, et al:
The transcriptional coactivator PGC-1beta drives the formation of
oxidative type IIX fibers in skeletal muscle. Cell Metab. 5:35–46.
2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Czubryt MP, McAnally J, Fishman GI and
Olson EN: Regulation of peroxisome proliferator-activated receptor
gamma coactivator 1 alpha (PGC-1 alpha) and mitochondrial function
by MEF2 and HDAC5. Proc Natl Acad Sci USA. 100:1711–1716. 2003.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Attia RR, Connnaughton S, Boone LR, et al:
Regulation of pyruvate dehydrogenase kinase 4 (PDK4) by thyroid
hormone: role of the peroxisome proliferator-activated receptor
gamma coactivator (PGC-1 alpha). J Biol Chem. 285:2375–2385. 2010.
View Article : Google Scholar
|
16
|
Schieke SM, Phillips D, McCoy JP Jr, et
al: The mammalian target of rapamycin (mTOR) pathway regulates
mitochondrial oxygen consumption and oxidative capacity. J Biol
Chem. 281:27643–27652. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Ramanathan A and Schreiber SL: Direct
control of mitochondrial function by mTOR. Proc Natl Acad Sci USA.
106:22229–22232. 2009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wu Z, Puigserver P, Andersson U, et al:
Mechanisms controlling mitochondrial biogenesis and respiration
through the thermogenic coactivator PGC-1. Cell. 98:115–124. 1999.
View Article : Google Scholar : PubMed/NCBI
|
19
|
St-Pierre J, Lin J, Krauss S, et al:
Bioenergetic analysis of peroxisome proliferator-activated receptor
gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1β) in
muscle cells. J Biol Chem. 278:26597–26603. 2003.PubMed/NCBI
|
20
|
Hardie DG: Minireview: the AMP-activated
protein kinase cascade: the key sensor of cellular energy status.
Endocrinology. 144:5179–5183. 2003. View Article : Google Scholar : PubMed/NCBI
|
21
|
Kemp BE, Stapleton D, Campbell DJ, et al:
AMP-activated protein kinase, super metabolic regulator. Biochem
Soc Trans. 31:162–168. 2003. View Article : Google Scholar : PubMed/NCBI
|
22
|
Willer A: Reduction of the individual
cancer risk by physical exercise. Onkologie. 26:283–289. 2003.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Gwinn DM, Shackelford DB, Egan DF, et al:
AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol
Cell. 30:214–226. 2008. View Article : Google Scholar : PubMed/NCBI
|
25
|
Kabeya Y, Mizushima N, Ueno T, et al: LC3,
a mammalian homologue of yeast Apg8p, is localized in
autophagosome membranes after processing. EMBO J. 19:5720–5728.
2000.
|
24
|
Hardie DG, Salt IP, Hawley SA and Davies
SP: AMP-activated protein kinase: an ultrasensitive system for
monitoring cellular energy charge. Biochem J. 338:717–722. 1999.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Cao Y and Klionsky DJ: Physiological
functions of Atg6/Beclin 1: a unique autophagy-related protein.
Cell Res. 17:839–849. 2007. View Article : Google Scholar : PubMed/NCBI
|
27
|
Pattingre S, Espert L, Biard-Piechaczyk M
and Codogno P: Regulation of macroautophagy by mTOR and Beclin 1
complexes. Biochimie. 90:313–323. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Meirhaeghe A, Crowley V, Lenaghan C, et
al: Characterization of the human, mouse and rat PGC1 beta
(peroxisome-proliferator-activated receptor-gamma co-activator 1
beta) gene in vitro and in vivo. Biochem J. 373:155–165. 2003.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Lin J, Tarr PT, Yang R, et al: PGC-1βeta
in the regulation of hepatic glucose and energy metabolism. J Biol
Chem. 278:30843–30848. 2003.
|
30
|
Finck BN and Kelly DP: PGC-1 coactivators:
inducible regulators of energy metabolism in health and disease. J
Clin Invest. 116:615–622. 2006. View
Article : Google Scholar : PubMed/NCBI
|
31
|
Feige JN and Auwerx J: Transcriptional
coregulators in the control of energy homeostasis. Trends Cell
Biol. 17:292–301. 2007. View Article : Google Scholar : PubMed/NCBI
|
32
|
Peralba JM, DeGraffenried L, Friedrichs W,
et al: Pharmacodynamic evaluation of CCI-779, an inhibitor of mTOR,
in cancer patients. Clin Cancer Res. 9:2887–2892. 2003.PubMed/NCBI
|
33
|
Boulay A, Zumstein-Mecker S, Stephan C, et
al: Antitumor efficacy of intermittent treatment schedules with the
rapamycin derivative RAD001 correlates with prolonged inactivation
of ribosomal protein S6 kinase 1 in peripheral blood mononuclear
cells. Cancer Res. 64:252–261. 2004. View Article : Google Scholar
|
34
|
Basso AD, Mirza A, Liu G, Long BJ, Bishop
WR and Kirschmeier P: The farnesyl transferase inhibitor (FTI)
SCH66336 (lonafarnib) inhibits Rheb farnesylation and mTOR
signaling. Role in FTI enhancement of taxane and tamoxifen
anti-tumor activity. J Biol Chem. 280:31101–31108. 2005. View Article : Google Scholar : PubMed/NCBI
|
35
|
Harhaji-Trajkovic L, Vilimanovich U,
Kravic-Stevovic T, Bumbasirevic V and Trajkovic V: AMPK-mediated
autophagy inhibits apoptosis in cisplatin-treated tumour cells. J
Cell Mol Med. 13:3644–3654. 2009. View Article : Google Scholar : PubMed/NCBI
|
36
|
Herrero-Martin G, Høyer-Hansen M,
Garcia-Garcia C, et al: TAK1 activates AMPK-dependent
cytoprotective autophagy in TRAIL-treated epithelial cells. EMBO J.
28:677–685. 2009. View Article : Google Scholar : PubMed/NCBI
|