1
|
Kim KJ, Lee KH, Kim HS, Moon KS, Jung TY,
Jung S and Lee MC: The presence of stem cell marker-expressing
cells is not prognostically significant in glioblastomas.
Neuropathology. 31:494–502. 2011. View Article : Google Scholar : PubMed/NCBI
|
2
|
Buckner JC: Factors influencing survival
in high-grade gliomas. Semin Oncol. 30(Suppl 19): 10–14. 2003.
View Article : Google Scholar
|
3
|
Peterson K: Brain tumors. Neurol Clin.
19:887–902. 2001. View Article : Google Scholar
|
4
|
Sathornsumetee S and Rich JN: New
treatment strategies for malignant gliomas. Expert Rev Anticancer
Ther. 6:1087–1104. 2006. View Article : Google Scholar
|
5
|
Sathornsumetee S and Rich JN: Designer
therapies for glioblastoma multiforme. Ann NY Acad Sci.
1142:108–132. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Morrell JL, Morphew M and Gould KL: A
mutant of Arp2p causes partial disassembly of the Arp2/3 complex
and loss of cortical actin function in fission yeast. Mol Biol
Cell. 10:4201–4215. 1999. View Article : Google Scholar : PubMed/NCBI
|
7
|
Pollard TD and Cooper JA: Actin, a central
player in cell shape and movement. Science. 326:1208–1212. 2009.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Liao G, Simone B and Liu G:
Mis-localization of Arp2 mRNA impairs persistence of directional
cell migration. Exp Cell Res. 317:812–822. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Pollard TD: Regulation of actin filament
assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol
Struct. 36:451–477. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Goley ED and Welch MD: The ARP2/3 complex:
an actin nucleator comes of age. Nat Rev Mol Cell Biol. 7:713–726.
2006. View
Article : Google Scholar : PubMed/NCBI
|
11
|
Cai L, Makhov AM, Schafer DA and Bear JE:
Coronin 1B antagonizes cortactin and remodels Arp2/3-containing
actin branches in lamellipodia. Cell. 134:828–842. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yokotsuka M, Iwaya K, Saito T, Pandiella
A, et al: Overexpression of HER2 signaling to WAVE2-Arp2/3 complex
activates MMP-independent migration in breast cancer. Breast Cancer
Res Treat. 126:311–318. 2011. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yi K, Unruh JR, Deng M, Slaughter BD,
Rubinstein B and Li R: Dynamic maintenance of asymmetric meiotic
spindle position through Arp2/3-complex-driven cytoplasmic
streaming in mouse oocytes. Nat Cell Biol. 13:1252–1258. 2011.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Xiong H, Mohler WA and Soto MC: The
branched actin nucleator Arp2/3 promotes nuclear migrations and
cell polarity in the C. elegans zygote. Dev Biol.
357:356–369. 2011. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lees-Miller JP, Henry G and Helfman DM:
Identification of act2, an essential gene in the fission yeast
Schizosaccharomyces pombe that encodes a protein related to
actin. Proc Natl Acad Sci USA. 89:80–83. 1992. View Article : Google Scholar : PubMed/NCBI
|
16
|
Winter D, Podtelejnikov AV, Mann M and Li
R: The complex containing actin-related proteins Arp2 and Arp3 is
required for the motility and integrity of yeast actin patches.
Curr Biol. 7:519–529. 1997. View Article : Google Scholar : PubMed/NCBI
|
17
|
Winter DC, Choe EY and Li R: Genetic
dissection of the budding yeast Arp2/3 complex: a comparison of the
in vivo and structural roles of individual subunits. Proc Natl Acad
Sci USA. 96:7288–7293. 1999. View Article : Google Scholar : PubMed/NCBI
|
18
|
Balasubramanian MK, Feoktistova A,
McCollum D and Gould KL: Fission yeast Sop2p: a novel and
evolutionarily conserved protein that interacts with Arp3p and
modulates profilin function. EMBO J. 15:6426–6437. 1996.PubMed/NCBI
|
19
|
Sawa M, Suetsugu S, Sugimoto A, Miki H,
Yamamoto M and Takenawa T: Essential role of the C. elegans
Arp2/3 complex in cell migration during ventral enclosure. J Cell
Sci. 116:1505–1518. 2003.
|
20
|
Harborth J, Elbashir SM, Bechert K, Tuschl
T and Weber K: Identification of essential genes in cultured
mammalian cells using small interfering RNAs. J Cell Sci.
114:4557–4565. 2001.PubMed/NCBI
|
21
|
Mendoza MC, Er EE, Zhang W, Ballif BA,
Elliott HL, Danuser G and Blenis J: ERK-MAPK drives lamellipodia
protrusion by activating the WAVE2 regulatory complex. Mol Cell.
41:661–671. 2011. View Article : Google Scholar : PubMed/NCBI
|
22
|
Moreau V, Galan JM, Devilliers G,
Haguenauer-Tsapis R and Winsor B: The yeast actin-related protein
Arp2p is required for the internalization step of endocytosis. Mol
Biol Cell. 8:1361–1375. 1997. View Article : Google Scholar : PubMed/NCBI
|
23
|
Schaerer-Brodbeck C and Riezman H:
Functional interactions between the p35 subunit of the Arp2/3
complex and calmodulin in yeast. Mol Biol Cell. 11:1113–1127. 2000.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Jonsdottir GA and Li R: Dynamics of yeast
Myosin I: evidence for a possible role in scission of endocytic
vesicles. Curr Biol. 14:1604–1609. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Benesch S, Polo S, Lai FP, Anderson KI,
Stradal TE, Wehland J and Rottner K: N-WASP deficiency impairs EGF
internalization and actin assembly at clathrin-coated pits. J Cell
Sci. 118:3103–3115. 2005. View Article : Google Scholar : PubMed/NCBI
|
26
|
Laurila E, Savinainen K, Kuuselo R, Karhu
R and Kallioniemi A: Characterization of the 7q21–q22 amplicon
identifies ARPC1A, a subunit of the Arp2/3 complex, as a regulator
of cell migration and invasion in pancreatic cancer. Genes
Chromosomes Cancer. 48:330–339. 2009.
|
27
|
Suraneni P, Rubinstein B, Unruh JR, Durnin
M, Hanein D and Li R: The Arp2/3 complex is required for
lamellipodia extension and directional fibroblast cell migration. J
Cell Biol. 197:239–251. 2012. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mariani L, Beaudry C, McDonough WS, et al:
Glioma cell motility is associated with reduced transcription of
proapoptotic and proliferation genes: a cDNA microarray analysis. J
Neurooncol. 53:161–176. 2001. View Article : Google Scholar : PubMed/NCBI
|
29
|
Imamura H, Takao S and Aikou T: A modified
invasion-3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium
bromide assay for quantitating tumor cell invasion. Cancer Res.
54:3620–3624. 1994.PubMed/NCBI
|
30
|
Berridge MV and Tan AS: Characterization
of the cellular reduction of
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT):
subcellular localization, substrate dependence, and involvement of
mitochondrial electron transport in MTT reduction. Arch Biochem
Biophys. 303:474–482. 1993. View Article : Google Scholar
|
31
|
Repesh LA: A new in vitro assay for
quantitating tumor cell invasion. Invasion Metastasis. 9:192–208.
1989.PubMed/NCBI
|
32
|
Wu TL and Zhou D: Viral delivery for gene
therapy against cell movement in cancer. Adv Drug Deliv Rev.
63:671–677. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wen PY and Kesari S: Malignant gliomas in
adults. N Engl J Med. 359:492–507. 2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Agudelo-Garcia PA, De Jesus JK, Williams
SP, et al: Glioma cell migration on three-dimensional nanofiber
scaffolds is regulated by substrate topography and abolished by
inhibition of STAT3 signaling. Neoplasia. 13:831–840.
2011.PubMed/NCBI
|
35
|
Louis DN: Molecular pathology of malignant
gliomas. Annu Rev Pathol. 1:97–117. 2006. View Article : Google Scholar
|
36
|
Yu SP, Yang XJ, Zhang B, et al: Enhanced
invasion in vitro and the distribution patterns in vivo of
CD133+ glioma stem cells. Chin Med J (Engl).
124:2599–2604. 2011.PubMed/NCBI
|
37
|
Brandes AA, Tosoni A, Franceschi E, Reni
M, Gatta G and Vecht C: Glioblastoma in adults. Crit Rev Oncol
Hematol. 67:139–152. 2008. View Article : Google Scholar
|
38
|
Stark AM, van de Bergh J, Hedderich J,
Mehdorn HM and Nabavi A: Glioblastoma: clinical characteristics,
prognostic factors and survival in 492 patients. Clin Neurol
Neurosurg. 114:840–845. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lamszus K, Kunkel P and Westphal M:
Invasion as limitation to anti-angiogenic glioma therapy. Acta
Neurochir Suppl. 88:169–177. 2003.PubMed/NCBI
|
40
|
Zhai GG, Malhotra R, Delaney M, et al:
Radiation enhances the invasive potential of primary glioblastoma
cells via activation of the Rho signaling pathway. J Neurooncol.
76:227–237. 2006. View Article : Google Scholar : PubMed/NCBI
|
41
|
Joy AM, Beaudry CE, Tran NL, Ponce FA,
Holz DR, Demuth T and Berens ME: Migrating glioma cells activate
the PI3-K pathway and display decreased susceptibility to
apoptosis. J Cell Sci. 116:4409–4417. 2003. View Article : Google Scholar : PubMed/NCBI
|
42
|
Hanisch J, Kolm R, Wozniczka M, Bumann D,
Rottner K and Stradal TE: Activation of a RhoA/myosin II-dependent
but Arp2/3 complex-independent pathway facilitates
Salmonella invasion. Cell Host Microbe. 9:273–285. 2011.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Shao D, Levine H and Rappel WJ: Coupling
actin flow, adhesion, and morphology in a computational cell
motility model. Proc Natl Acad Sci USA. 109:6851–6856. 2012.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Insall RH and Machesky LM: Actin dynamics
at the leading edge: from simple machinery to complex networks. Dev
Cell. 17:310–322. 2009. View Article : Google Scholar : PubMed/NCBI
|
45
|
Campellone KG, Webb NJ, Znameroski EA and
Welch MD: WHAMM is an Arp2/3 complex activator that binds
microtubules and functions in ER to Golgi transport. Cell.
134:148–161. 2008. View Article : Google Scholar : PubMed/NCBI
|
46
|
Svitkina TM and Borisy GG: Arp2/3 complex
and actin depolymerizing factor/cofilin in dendritic organization
and treadmilling of actin filament array in lamellipodia. J Cell
Biol. 145:1009–1026. 1999. View Article : Google Scholar : PubMed/NCBI
|
47
|
Vignjevic D and Montagnac G:
Reorganisation of the dendritic actin network during cancer cell
migration and invasion. Semin Cancer Biol. 18:12–22. 2008.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Watanabe N: Inside view of cell locomotion
through single-molecule: fast F-/G-actin cycle and G-actin
regulation of polymer restoration. Proc Jpn Acad Ser B Phys Biol
Sci. 86:62–83. 2010. View Article : Google Scholar : PubMed/NCBI
|
49
|
Mullins RD, Heuser JA and Pollard TD: The
interaction of Arp2/3 complex with actin: nucleation, high affinity
pointed end capping, and formation of branching networks of
filaments. Proc Natl Acad Sci USA. 95:6181–6186. 1998. View Article : Google Scholar : PubMed/NCBI
|
50
|
Mogilner A and Oster G: Cell motility
driven by actin polymerization. Biophys J. 71:3030–3045. 1996.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Wu C, Asokan SB, Berginski ME, et al:
Arp2/3 is critical for lamellipodia and response to extracellular
matrix cues but is dispensable for chemotaxis. Cell. 148:973–987.
2012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Nolen BJ, Tomasevic N, Russell A, et al:
Characterization of two classes of small molecule inhibitors of
Arp2/3 complex. Nature. 406:1031–1034. 2009. View Article : Google Scholar : PubMed/NCBI
|
53
|
Li A, Ma Y, Yu X, et al: Rac1 drives
melanoblast organization during mouse development by orchestrating
pseudopod-driven motility and cell-cycle progression. Dev Cell.
21:722–734. 2011. View Article : Google Scholar : PubMed/NCBI
|
54
|
Verkhovsky AB, Svitkina TM and Borisy GG:
Self-polarization and directional motility of cytoplasm. Curr Biol.
9:11–20. 1999. View Article : Google Scholar : PubMed/NCBI
|
55
|
Rottner K and Stradal TE: Actin dynamics
and turnover in cell motility. Curr Opin Cell Biol. 23:569–578.
2011. View Article : Google Scholar : PubMed/NCBI
|
56
|
Sibony-Benyamini H and Gil-Henn H:
Invadopodia: the leading force. Eur J Cell Biol. 91:896–901. 2012.
View Article : Google Scholar
|
57
|
Yamaguchi H: Pathological roles of
invadopodia in cancer invasion and metastasis. Eur J Cell Biol.
91:902–907. 2012. View Article : Google Scholar : PubMed/NCBI
|