1
|
Yang W, Lee DY and Ben-David Y: The roles
of microRNAs in tumorigenesis and angiogenesis. Int J Physiol
Pathophysiol Pharmacol. 3:140–155. 2011.PubMed/NCBI
|
2
|
Calin GA, Sevignani C, Dumitru CD, et al:
Human microRNA genes are frequently located at fragile sites and
genomic regions involved in cancers. Proc Natl Acad Sci USA.
101:2999–3004. 2004. View Article : Google Scholar : PubMed/NCBI
|
3
|
Krutzfeldt J, Rajewsky N, Braich R, et al:
Silencing of microRNAs in vivo with ‘antagomirs’. Nature.
438:685–689. 2005.
|
4
|
Esquela-Kerscher A and Slack FJ: Oncomirs
- microRNAs with a role in cancer. Nat Rev Cancer. 6:259–269. 2006.
View Article : Google Scholar
|
5
|
Lee Y, Ahn C, Han J, et al: The nuclear
RNase III Drosha initiates microRNA processing. Nature.
425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI
|
6
|
Bernstein E, Caudy AA, Hammond SM and
Hannon GJ: Role for a bidentateribonuclease in the initiation step
of RNA interference. Nature. 409:363–366. 2001. View Article : Google Scholar : PubMed/NCBI
|
7
|
Macrae IJ, Zhou K, Li F, et al: Structural
basis for double-stranded RNA processing by Dicer. Science.
311:195–198. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Atkin NB: Cytogenetics of carcinoma of the
cervix uteri: a review. Cancer Genet Cytogenet. 95:33–39. 1997.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Heselmeyer K, Macville M, Schrock E, et
al: Advanced-stage cervical carcinomas are defined by a recurrent
pattern of chromosomal aberrations revealing high genetic
instability and a consistent gain of chromosome arm 3q. Genes
Chromosomes Cancer. 19:233–240. 1997. View Article : Google Scholar
|
10
|
Kirchhoff M, Rose H, Petersen BL, et al:
Comparative genomic hybridization reveals a recurrent pattern of
chromosomal aberrations in severe dysplasia/carcinoma in situ of
the cervix and in advanced-stage cervical carcinoma. Genes
Chromosomes Cancer. 24:144–150. 1999. View Article : Google Scholar
|
11
|
Muralidhar B, Winder D, Murray M, et al:
Functional evidence that Drosha overexpression in cervical squamous
cell carcinoma affects cell phenotype and microRNA profiles. J
Pathol. 224:496–507. 2011. View Article : Google Scholar : PubMed/NCBI
|
12
|
Muralidhar B, Goldstein LD, Ng G, et al:
Global microRNA profiles in cervical squamous cell carcinoma depend
on Drosha expression levels. J Pathol. 212:368–377. 2007.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Pett MR, Alazawi WO, Roberts I, et al:
Acquisition of high-level chromosomal instability is associated
with integration of human papillomavirus type 16 in cervical
keratinocytes. Cancer Res. 64:1359–1368. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Pett MR, Herdman MT, Palmer RD, et al:
Selection of cervical keratinocytes containing integrated HPV16
associates with episome loss and an endogenous antiviral response.
Proc Natl Acad Sci USA. 103:3822–3827. 2006. View Article : Google Scholar : PubMed/NCBI
|
15
|
Boudreau RL, Spengler RM and Davidson BL:
Rational design of therapeutic siRNAs: minimizing off-targeting
potential to improve the safety of RNAi therapy for Huntington’s
disease. Mol Ther. 19:2169–2177. 2011.PubMed/NCBI
|
16
|
Cai J, Tang H, Xu L, Wang X, et al:
Fibroblasts in omentum activated by tumor cells promote ovarian
cancer growth, adhesion and invasiveness. Carcinogenesis. 33:20–29.
2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Diao S, Zhang JF, Wang H, et al: Proteomic
identification of microRNA-122a target proteins in hepatocellular
carcinoma. Proteomics. 10:3723–3731. 2010. View Article : Google Scholar : PubMed/NCBI
|
18
|
Dyballa N and Metzger S: Fast and
sensitive colloidal Coomassie G-250 staining for proteins in
polyacrylamide gels. J Vis Exp. 30:pii1431. 2009.PubMed/NCBI
|
19
|
Wiesen KM, Xia S, Yang CP and Horwitz SB:
Wild-type class I beta-tubulin sensitizes Taxol-resistant breast
adenocarcinoma cells harboring a beta-tubulin mutation. Cancer
Lett. 257:227–235. 2007. View Article : Google Scholar : PubMed/NCBI
|
20
|
Schmidt M, Schler G, Gruensfelder P and
Hoppe F: Differential gene expression in a paclitaxel-resistant
clone of a head and neck cancer cell line. Eur Arch
Otorhinolaryngol. 263:127–134. 2006. View Article : Google Scholar : PubMed/NCBI
|
21
|
Akoumianaki T, Kardassis D, Polioudaki H,
et al: Nucleocyto plasmic shuttling of soluble tubulin in mammalian
cells. J Cell Sci. 122:1111–1118. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li C, Harada A and Oh Y: IGFBP-3
sensitizes antiestrogen-resistant breast cancer cells through
interaction with GRP78. Cancer Lett. 325:200–206. 2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Luvsandagva B, Nakamura K, Kitahara Y, et
al: GRP78 induced by estrogen plays a role in the chemosensitivity
of endometrial cancer. Gynecol Oncol. 126:132–139. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhou X, You F, Chen H and Jiang Z:
Poly(C)-binding protein 1 (PCBP1) mediates housekeeping degradation
of mitochondrial antiviral signaling (MAVS). Cell Res. 22:717–727.
2012. View Article : Google Scholar : PubMed/NCBI
|
25
|
Lian WX, Yin RH, Kong XZ, et al: THAP11, a
novel binding protein of PCBP1, negatively regulates CD44
alternative splicing and cell invasion in a human hepatoma cell
line. FEBS Lett. 586:1431–1438. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hao J, Wang K, Yue Y, et al: Selective
expression of S100A11 in lung cancer and its role in regulating
proliferation of adenocarcinomas cells. Mol Cell Biochem.
359:323–332. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Liu XG, Wang XP, Li WF, et al:
Ca2+-binding protein S100A11: A novel diagnostic marker
for breast carcinoma. Oncol Rep. 23:1301–1308. 2010.
|
28
|
Zhou D, Mei Q, Li J and He H: Cyclophilin
A and viral infections. Biochem Biophys Res Commun. 424:647–650.
2012. View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhang M, Dai C, Zhu H, et al: Cyclophilin
A promotes human hepatocellular carcinoma cell metastasis via
regulation of MMP3 and MMP9. Mol Cell Biochem. 357:387–395. 2011.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Chen CY, Fang HY, Chiou SH, et al:
Sumoylation of eukaryotic elongation factor 2 is vital for protein
stability and anti-apoptotic activity in lung adenocarcinoma cells.
Cancer Sci. 102:1582–1589. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Nakamura J, Aoyagi S, Nanchi I, et al:
Overexpression of eukaryotic elongation factor eEF2 in
gastrointestinal cancers and its involvement in G2/M progression in
the cell cycle. Int J Oncol. 34:1181–1189. 2009.PubMed/NCBI
|
32
|
Wang J, Ying G, Wang J, et al:
Characterization of phospho-glycerate kinase-1 expression of
stromal cells derived from tumor microenvironment in prostate
cancer progression. Cancer Res. 70:471–480. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Zieker D, Königsrainer I, Tritschler I, et
al: Phosphoglycerate kinase 1 a promoting enzyme for peritoneal
dissemination in gastric cancer. Int J Cancer. 126:1513–1520.
2010.PubMed/NCBI
|
34
|
He LR, Zhao HY, Li BK, et al:
Overexpression of eIF5A-2 is an adverse prognostic marker of
survival in stage I non-small cell lung cancer patients. Int J
Cancer. 129:143–150. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Lee NP, Tsang FH, Shek FH, et al:
Prognostic significance and therapeutic potential of eukaryotic
translation initiation factor 5A (eIF5A) in hepatocellular
carcinoma. Int J Cancer. 127:968–976. 2010.PubMed/NCBI
|
36
|
Hossain MN, Fuji M, Miki K, Endoh M and
Ayusawa D: Downregulation of hnRNP C1/C2 by siRNA sensitizes HeLa
cells to various stresses. Mol Cell Biochem. 296:151–157. 2007.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Wu D, Matsushita K, Matsubara H, Nomura F
and Tomonaga T: An alternative splicing isoform of eukaryotic
initiation factor 4H promotes tumorigenesis in vivo and is a
potential therapeutic target for human cancer. Int J Cancer.
128:1018–1030. 2011. View Article : Google Scholar
|
38
|
Bailey SD, Xie C, Do R, et al: Variation
at the NFATC2 locus increases the risk of thiazolidinedione-induced
edema in the Diabetes REduction Assessment with ramipril and
rosiglitazone Medication (DREAM) study. Diabetes Care.
33:2250–2253. 2010. View Article : Google Scholar
|
39
|
Brüning-Richardson A, Bond J, Alsiary R,
et al: NuMA overexpression in epithelial ovarian cancer. PLoS One.
7:e389452012.
|
40
|
Kilpivaara O, Rantanen M, Tamminen A, et
al: Comprehensive analysis of NuMA variation in breast cancer. BMC
Cancer. 8:712008. View Article : Google Scholar : PubMed/NCBI
|
41
|
Chang P, Coughlin M and Mitchison TJ:
Interaction between Poly(ADP-ribose) and NuMA contributes to
mitotic spindle pole assembly. Mol Biol Cell. 20:4575–4585. 2009.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Genovese G, Ghosh P, Li H, et al: The
tumor suppressor HINT1 regulates MITF and β-catenin transcriptional
activity in melanoma cells. Cell Cycle. 11:2206–2215.
2012.PubMed/NCBI
|
43
|
Huang H, Wei X, Su X, et al: Clinical
significance of expression of Hint1 and potential epigenetic
mechanism in gastric cancer. Int J Oncol. 38:1557–1564.
2011.PubMed/NCBI
|
44
|
Tang Z, Yuan S, Hu Y, et al:
Over-expression of GAPDH in human colorectal carcinoma as a
preferred target of 3-bromo-pyruvate propyl ester. J Bioenerg
Biomembr. 44:117–125. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Huang Q, Lan F, Zheng Z, et al: Akt2
kinase suppresses glyceraldehyde-3-phosphate dehydrogenase
(GAPDH)-mediated apoptosis in ovarian cancer cells via
phosphorylating GAPDH at threonine 237 and decreasing its nuclear
translocation. J Biol Chem. 286:42211–42220. 2011. View Article : Google Scholar
|
46
|
Nicholls C, Li H and Liu JP: GAPDH: a
common enzyme with uncommon functions. Clin Exp Pharmacol Physiol.
39:674–679. 2012. View Article : Google Scholar : PubMed/NCBI
|
47
|
Hashimoto S, Hirose M, Hashimoto A, et al:
Targeting AMAP1 and cortactin binding bearing an atypical src
homology 3/proline interface for prevention of breast cancer
invasion and metastasis. Proc Natl Acad Sci USA. 103:7036–7041.
2006. View Article : Google Scholar : PubMed/NCBI
|
48
|
Müller T, Stein U, Poletti A, et al: ASAP1
promotes tumor cell motility and invasiveness, stimulates
metastasis formation in vivo, and correlates with poor survival in
colorectal cancer patients. Oncogene. 29:2393–2403. 2010.PubMed/NCBI
|
49
|
Friedman RC, Farh KK, Burge CB and Bartel
DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome
Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI
|
50
|
Shibazaki M, Maesawa C, Akasaka K, et al:
Transcriptional and post-transcriptional regulation of βIII-tubulin
protein expression in relation with cell cycle-dependent regulation
of tumor cells. Int J Oncol. 40:695–702. 2012.
|
51
|
Nogales E: Structural insights into
microtubule function. Annu Rev Biochem. 69:277–302. 2000.
View Article : Google Scholar
|
52
|
Jordan MA and Wilson L: Microtubules as a
target for anticancer drugs. Nat Rev Cancer. 4:253–265. 2004.
View Article : Google Scholar : PubMed/NCBI
|