Oncogenic chromosomal translocations and human cancer (Review)
- Authors:
- Jie Zheng
-
Affiliations: Department of Pathology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China - Published online on: August 20, 2013 https://doi.org/10.3892/or.2013.2677
- Pages: 2011-2019
This article is mentioned in:
Abstract
Mitelman F, Johansson B and Mertens F: The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 7:233–245. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nambiar M, Kari V and Raghavan SC: Chromosomal translocations in cancer. Biochim Biophys Acta. 1786:139–152. 2008.PubMed/NCBI | |
Fröhling S and Döhner H: Chromosomal abnormalities in cancer. N Engl J Med. 359:722–734. 2008. | |
Pui CH, Relling MV and Downing JR: Acute lymphoblastic leukemia. N Engl J Med. 350:1535–1548. 2004. View Article : Google Scholar : PubMed/NCBI | |
Aplan PD: Causes of oncogenic chromosomal translocation. Trends Genet. 22:46–55. 2006. View Article : Google Scholar : PubMed/NCBI | |
Raghavan SC and Lieber MR: DNA structures at chromosomal translocation sites. Bioessays. 28:480–494. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hakim O, Resch W, Yamane A, et al: DNA damage defines sites of recurrent chromosomal translocations in B lymphocytes. Nature. 484:69–74. 2012.PubMed/NCBI | |
Meaburn KJ, Misteli T and Soutoglou E: Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol. 17:80–90. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kozubek S, Lukásová E, Marecková A, et al: The topological organization of chromosomes 9 and 22 in cell nuclei has a determinative role in the induction of t(9,22) translocations and in the pathogenesis of t(9,22) leukemias. Chromosoma. 108:426–435. 1999. View Article : Google Scholar : PubMed/NCBI | |
Neves H, Ramos C, da Silva MG, Parreira A and Parreira L: The nuclear topography of ABL, BCR, PML, and RARα genes: evidence for gene proximity in specific phases of the cell cycle and stages of hematopoietic differentiation. Blood. 93:1197–1207. 1999.PubMed/NCBI | |
Collins SJ: Retinoic acid receptors, hematopoiesis and leukemogenesis. Curr Opin Hematol. 15:346–351. 2008. View Article : Google Scholar : PubMed/NCBI | |
Roix JJ, McQueen PG, Munson PJ, Parada LA and Misteli T: Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet. 34:287–291. 2003. View Article : Google Scholar : PubMed/NCBI | |
Misteli T: The inner life of the genome. Sci Am. 304:66–73. 2011. View Article : Google Scholar | |
Osborne CS, Chakalova L, Mitchell JA, et al: Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol. 5:e1922007. View Article : Google Scholar | |
Cornfield DB, Mitchell DM, Almasri NM, Anderson JB, Ahrens KP, Dooley EO and Braylan RC: Follicular lymphoma can be distinguished from benign follicular hyperplasia by flow cytometry using simultaneous staining of cytoplasmic bcl-2 and cell surface CD20. Am J Clin Pathol. 114:258–263. 2000. View Article : Google Scholar : PubMed/NCBI | |
Welzel N, Le T, Marculescu R, et al: Templated nucleotide addition and immunoglobulin JH-gene utilization in t(11;14) junctions: implications for the mechanism of translocation and the origin of mantle cell lymphoma. Cancer Res. 61:1629–1636. 2001.PubMed/NCBI | |
Palmer RH, Vernersson E, Grabbe C and Hallberg B: Anaplastic lymphoma kinase: signalling in development and disease. Biochem J. 420:345–361. 2009. View Article : Google Scholar : PubMed/NCBI | |
Barreca A, Lasorsa E, Riera L, et al: Anaplastic lymphoma kinase in human cancer. J Mol Endocrinol. 47:R11–R23. 2011. View Article : Google Scholar : PubMed/NCBI | |
Iwahara T, Fujimoto J, Wen D, et al: Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene. 14:439–449. 1997. View Article : Google Scholar : PubMed/NCBI | |
Mathas S, Kreher S, Meaburn KJ, et al: Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma. Proc Natl Acad Sci USA. 106:5831–5836. 2009. View Article : Google Scholar : PubMed/NCBI | |
Gandhi M, Evdokimova V and Nikiforov YE: Mechanisms of chromosomal rearrangements in solid tumors: the model of papillary thyroid carcinoma. Mol Cell Endocrinol. 321:36–43. 2010. View Article : Google Scholar : PubMed/NCBI | |
Merolla F, Pentimalli F, Pacelli R, Vecchio G, Fusco A, Grieco M and Celetti A: Involvement of H4(D10S170) protein in ATM-dependent response to DNA damage. Oncogene. 26:6167–6175. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nikiforov YE: Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol. 21(Suppl 2): S37–S43. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ciampi R, Giordano TJ, Wikenheiser-Brokamp K, Koenig RJ and Nikiforov YE: HOOK3-RET: a novel type of RET/PTC rearrangement in papillary thyroid carcinoma. Endocr Relat Cancer. 14:445–452. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gandhi M, Medvedovic M, Stringer JR and Nikiforov YE: Interphase chromosome folding determines spatial proximity of genes participating in carcinogenic RET/PTC rearrangements. Oncogene. 25:2360–2366. 2006. View Article : Google Scholar : PubMed/NCBI | |
Clark J, Merson S, Jhavar S, et al: Diversity of TMPRSS2-ERG fusion transcripts in the human prostate. Oncogene. 26:2667–2673. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lin C, Yang L, Tanasa B, et al: Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell. 139:1069–1083. 2009. View Article : Google Scholar : PubMed/NCBI | |
Squire JA, Park PC, Yoshimoto M, Alami J, Williams JL, Evans A and Joshua AM: Prostate cancer as a model system for genetic diversity in tumors. Adv Cancer Res. 112:183–216. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kumar-Sinha C, Tomlins SA and Chinnaiyan AM: Recurrent gene fusions in prostate cancer. Nat Rev Cancer. 8:497–511. 2008. View Article : Google Scholar : PubMed/NCBI | |
Seth A and Watson DK: ETS transcription factors and their emerging roles in human cancer. Eur J Cancer. 41:2462–2478. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sankar S and Lessnick SL: Promiscuous partnerships in Ewing’s sarcoma. Cancer Genet. 204:351–365. 2011.PubMed/NCBI | |
Patel M, Simon JM, Iglesia MD, Wu SB, McFadden AW, Lieb JD and Davis IJ: Tumor-specific retargeting of an oncogenic transcription factor chimera results in dysregulation of chromatin and transcription. Genome Res. 22:259–270. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zelent A, Greaves M and Enver T: Role of the TEL-AML1 fusion gene in the molecular pathogenesis of childhood acute lymphoblastic leukaemia. Oncogene. 23:4275–4283. 2004. | |
Bohlander SK: ETV6: a versatile player in leukemogenesis. Semin Cancer Biol. 15:162–174. 2005. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Tognon CE, Godinho FJ, et al: ETV6-NTRK3 fusion oncogene initiates breast cancer from committed mammary progenitors via activation of AP1 complex. Cancer Cell. 12:542–558. 2007. View Article : Google Scholar | |
Vaarala MH, Porvari K, Kyllönen A, Lukkarinen O and Vihko P: The TMPRSS2 gene encoding transmembrane serine protease is overexpressed in a majority of prostate cancer patients: detection of mutated TMPRSS2 form in a case of aggressive disease. Int J Cancer. 94:705–710. 2001. | |
Mani RS, Tomlins SA, Callahan K, et al: Induced chromosomal proximity and gene fusions in prostate cancer. Science. 326:12302009. View Article : Google Scholar : PubMed/NCBI | |
Bastus NC, Boyd LK, Mao X, et al: Androgen-induced TMPRSS2:ERG fusion in nonmalignant prostate epithelial cells. Cancer Res. 70:9544–9548. 2010.PubMed/NCBI | |
Hu Q, Kwon YS, Nunez E, et al: Enhancing nuclear receptor-induced transcription requires nuclear motor and LSD1-dependent gene networking in interchromatin granules. Proc Natl Acad Sci USA. 105:19199–19204. 2008. View Article : Google Scholar : PubMed/NCBI | |
Soutoglou E, Dorn JF, Sengupta K, et al: Positional stability of single double-strand breaks in mammalian cells. Nat Cell Biol. 9:675–682. 2007. View Article : Google Scholar : PubMed/NCBI | |
Parada LA, McQueen PG and Misteli T: Tissue-specific spatial organization of genomes. Genome Biol. 5:R442004. View Article : Google Scholar : PubMed/NCBI | |
Ortiz de Mendíbil I, Vizmanos JL and Novo FJ: Signatures of selection in fusion transcripts resulting from chromosomal translocations in human cancer. PLoS One. 4:e48052009.PubMed/NCBI | |
Bickmore WA and Teague P: Influences of chromosome size, gene density and nuclear position on the frequency of constitutional translocations in the human population. Chromosome Res. 10:707–715. 2002. View Article : Google Scholar : PubMed/NCBI | |
Narsing S, Jelsovsky Z, Mbah A and Blanck G: Genes that contribute to cancer fusion genes are large and evolutionarily conserved. Cancer Genet Cytogenet. 191:78–84. 2009. View Article : Google Scholar : PubMed/NCBI | |
Burrow AA, Williams LE, Pierce LC and Wang YH: Over half of breakpoints in gene pairs involved in cancer-specific recurrent translocations are mapped to human chromosomal fragile sites. BMC Genomics. 10:592009. View Article : Google Scholar : PubMed/NCBI | |
Branco MR and Pombo A: Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 4:e1382006. View Article : Google Scholar : PubMed/NCBI | |
Chiarle R, Zhang Y, Frock RL, et al: Genome-wide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell. 147:107–119. 2011. View Article : Google Scholar : PubMed/NCBI | |
Obe G, Pfeiffer P, Savage JR, et al: Chromosomal aberrations: formation, identification and distribution. Mutat Res. 504:17–36. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cowell IG, Sunter NJ, Singh PB, Austin CA, Durkacz BW and Tilby MJ: γH2AX foci form preferentially in euchromatin after ionising-radiation. PLoS One. 2:e10572007. | |
Lorat Y, Schanz S, Schuler N, Wennemuth G, Rübe C and Rübe CE: Beyond repair foci: DNA double-strand break repair in euchromatic and heterochromatic compartments analyzed by transmission electron microscopy. PLoS One. 7:e381652012. View Article : Google Scholar | |
Murray JM, Stiff T and Jeggo PA: DNA double-strand break repair within heterochromatic regions. Biochem Soc Trans. 40:173–178. 2012. View Article : Google Scholar : PubMed/NCBI | |
Turc-Carel C, Aurias A, Mugneret F, et al: Chromosomes in Ewing’s sarcoma. I An evaluation of 85 cases of remarkable consistency of t(11;22)(q24;q12). Cancer Genet Cytogenet. 32:229–238. 1988. | |
Wang J, Cai Y, Ren C and Ittmann M: Expression of variant TMPRSS2/ERG fusion messenger RNAs is associated with aggressive prostate cancer. Cancer Res. 66:8347–8351. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Cai Y, Shao LJ, et al: Activation of NF-κB by TMPRSS2/ERG fusion isoforms through toll-like receptor-4. Cancer Res. 71:1325–1333. 2011. | |
Tomlins SA, Bjartell A, Chinnaiyan AM, Jenster G, Nam RK, Rubin MA and Schalken JA: ETS gene fusions in prostate cancer: from discovery to daily clinical practice. Eur Urol. 56:275–286. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Zhou L, Miyamoto T, et al: AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proc Natl Acad Sci USA. 98:10398–10403. 2001. View Article : Google Scholar : PubMed/NCBI | |
Licht JD and Sternberg DW: The molecular pathology of acute myeloid leukemia. Hematology Am Soc Hematol Educ Program. 2005:137–142. 2005. View Article : Google Scholar : PubMed/NCBI | |
Rubnitz JE, Raimondi SC, Halbert AR, et al: Characteristics and outcome of t(8;21)-positive childhood acute myeloid leukemia: a single institution’s experience. Leukemia. 16:2072–2077. 2002.PubMed/NCBI | |
Okumura AJ, Peterson LF, Okumura F, Boyapati A and Zhang DE: t(8;21)(q22;q22) Fusion proteins preferentially bind to duplicated AML1/RUNX1 DNA-binding sequences to differentially regulate gene expression. Blood. 112:1392–1401. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang M and Liu JM: Domains involved in ETO and human N-CoR interaction and ETO transcription repression. Leuk Res. 28:409–414. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang L and Hiebert SW: TEL contacts multiple co-repressors and specifically associates with histone deacetylase-3. Oncogene. 20:3716–3725. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mengeling BJ, Phan TQ, Goodson ML and Privalsky ML: Aberrant corepressor interactions implicated in PML-RARα and PLZF-RARα leukemogenesis reflect an altered recruitment and release of specific NCoR and SMRT splice variants. J Biol Chem. 286:4236–4247. 2011.PubMed/NCBI | |
Zhang XW, Yan XJ, Zhou ZR, et al: Arsenic trioxide controls the fate of the PML-RARα oncoprotein by directly binding PML. Science. 328:240–243. 2010.PubMed/NCBI | |
Mueller D, García-Cuéllar MP, Bach C, Buhl S, Maethner E and Slany RK: Misguided transcriptional elongation causes mixed lineage leukemia. PLoS Biol. 7:e10002492009. View Article : Google Scholar : PubMed/NCBI | |
Balgobind BV, Zwaan CM, Pieters R and Van den Heuvel-Eibrink MM: The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia. Leukemia. 25:1239–1248. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Cheng EH and Hsieh JJ: MLL fusions: pathways to leukemia. Cancer Biol Ther. 8:1204–1211. 2009. View Article : Google Scholar : PubMed/NCBI | |
Krivtsov AV and Armstrong SA: MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer. 7:823–833. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dobson CL, Warren AJ, Pannell R, Forster A and Rabbitts TH: Tumorigenesis in mice with a fusion of the leukaemia oncogene Mll and the bacterial lacZ gene. EMBO J. 19:843–851. 2000. View Article : Google Scholar : PubMed/NCBI | |
Bernt KM, Zhu N, Sinha AU, et al: MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L. Cancer Cell. 20:66–78. 2011. View Article : Google Scholar | |
Daigle SR, Olhava EJ, Therkelsen CA, et al: Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell. 20:53–65. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Cheng EH and Hsieh JJ: Bimodal degradation of MLL by SCFSkp2 and APCCdc20 assures cell cycle execution: a critical regulatory circuit lost in leukemogenic MLL fusions. Genes Dev. 21:2385–2398. 2007.PubMed/NCBI | |
Ayton PM and Cleary ML: Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev. 17:2298–2307. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zeisig BB, Schreiner S, García-Cuéllar MP and Slany RK: Transcriptional activation is a key function encoded by MLL fusion partners. Leukemia. 17:359–365. 2003. View Article : Google Scholar : PubMed/NCBI | |
Okada Y, Feng Q, Lin Y, et al: hDOT1L links histone methylation to leukemogenesis. Cell. 121:167–178. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wong P, Iwasaki M, Somervaille TC, So CW and Cleary ML: Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev. 21:2762–2774. 2007. View Article : Google Scholar | |
So CW, Lin M, Ayton PM, Chen EH and Cleary ML: Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell. 4:99–110. 2003. View Article : Google Scholar : PubMed/NCBI | |
So CW and Cleary ML: Dimerization: a versatile switch for oncogenesis. Blood. 104:919–922. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bischof D, Pulford K, Mason DY and Morris SW: Role of the nucleophosmin (NPM) portion of the non-Hodgkin’s lymphoma-associated NPM-anaplastic lymphoma kinase fusion protein in oncogenesis. Mol Cell Biol. 17:2312–2325. 1997. | |
Goldman JM and Melo JV: Chronic myeloid leukemia - advances in biology and new approaches to treatment. N Engl J Med. 349:1451–1464. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ladanyi M and Cavalchire G: Molecular variant of the NPM-ALK rearrangement of Ki-1 lymphoma involving a cryptic ALK splice site. Genes Chromosomes Cancer. 15:173–177. 1996. View Article : Google Scholar : PubMed/NCBI | |
Jhiang SM: The RET proto-oncogene in human cancers. Oncogene. 19:5590–5597. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zhao X, Ghaffari S, Lodish H, Malashkevich VN and Kim PS: Structure of the Bcr-Abl oncoprotein oligomerization domain. Nat Struct Biol. 9:117–120. 2002.PubMed/NCBI | |
Alberti L, Carniti C, Miranda C, Roccato E and Pierotti MA: RET and NTRK1 proto-oncogenes in human diseases. J Cell Physiol. 195:168–186. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mizuki M, Ueda S, Matsumura I, Ishiko J, Schwäble J, Serve H and Kanakura Y: Oncogenic receptor tyrosine kinase in leukemia. Cell Mol Biol. 49:907–922. 2003.PubMed/NCBI | |
Mano H: Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci. 99:2349–2355. 2008. View Article : Google Scholar : PubMed/NCBI | |
Nagar B, Hantschel O, Seeliger M, Davies JM, Weis WI, Superti-Furga G and Kuriyan J: Organization of the SH3-SH2 unit in active and inactive forms of the c-Abl tyrosine kinase. Mol Cell. 21:787–798. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Dumitrescu TP, Smithgall TE and Engen JR: Abl N-terminal cap stabilization of SH3 domain dynamics. Biochemistry. 47:5795–5803. 2008. View Article : Google Scholar : PubMed/NCBI | |
Mian AA, Oancea C, Zhao Z, Ottmann OG and Ruthardt M: Oligomerization inhibition, combined with allosteric inhibition, abrogates the transformation potential of T315I-positive BCR/ABL. Leukemia. 23:2242–2247. 2009. View Article : Google Scholar : PubMed/NCBI | |
He Y, Wertheim JA, Xu L, Miller JP, Karnell FG and Choi JK: The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood. 99:2957–2968. 2002. View Article : Google Scholar : PubMed/NCBI | |
Reddy EP and Aggarwal AK: The ins and outs of bcr-abl inhibition. Genes Cancer. 3:447–454. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tong Q, Xing S and Jhiang SM: Leucine zipper-mediated dimerization is essential for the PTC1 oncogenic activity. J Biol Chem. 272:9043–9047. 1997. View Article : Google Scholar : PubMed/NCBI | |
Pillai RN and Ramalingam SS: The biology and clinical features of non-small cell lung cancers with EML4-ALK translocation. Curr Oncol Rep. 14:105–110. 2012. View Article : Google Scholar : PubMed/NCBI | |
Shaw AT, Yeap BY, Solomon BJ, et al: Effect of crizotinib on overall survival in patients with advanced non-small-cell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol. 12:1004–1012. 2011. View Article : Google Scholar : PubMed/NCBI | |
Willis TG and Dyer MJ: The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood. 96:808–822. 2000.PubMed/NCBI | |
Dadi S, Le Noir S, Asnafi V, Beldjord K and Macintyre EA: Normal and pathological V(D)J recombination: contribution to the understanding of human lymphoid malignancies. Adv Exp Med Biol. 650:180–194. 2009. View Article : Google Scholar : PubMed/NCBI | |
Martinez-Climent JA, Fontan L, Gascoyne RD, Siebert R and Prosper F: Lymphoma stem cells: enough evidence to support their existence? Haematologica. 95:293–302. 2010. View Article : Google Scholar : PubMed/NCBI | |
Graux C, Cools J, Michaux L, Vandenberghe P and Hagemeijer A: Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia. 20:1496–1510. 2006. View Article : Google Scholar : PubMed/NCBI | |
Van Vlierberghe P, van Grotel M, Beverloo HB, et al: The cryptic chromosomal deletion del(11)(p12p13) as a new activation mechanism of LMO2 in pediatric T-cell acute lymphoblastic leukemia. Blood. 108:3520–3529. 2006.PubMed/NCBI | |
Brake RL, Kees UR and Watt PM: Multiple negative elements contribute to repression of the HOX11 proto-oncogene. Oncogene. 17:1787–1795. 1998. View Article : Google Scholar : PubMed/NCBI | |
Riz I, Hawley TS, Johnston H and Hawley RG: Role of TLX1 in T-cell acute lymphoblastic leukaemia pathogenesis. Br J Haematol. 145:140–143. 2009. | |
Kees UR, Heerema NA, Kumar R, et al: Expression of HOX11 in childhood T-lineage acute lymphoblastic leukaemia can occur in the absence of cytogenetic aberration at 10q24: a study from the Children’s Cancer Group (CCG). Leukemia. 17:887–893. 2003. | |
Dadi S, Le Noir S, Payet-Bornet D, et al: TLX homeodomain oncogenes mediate T cell maturation arrest in T-ALL via interaction with ETS1 and suppression of TCRα gene expression. Cancer Cell. 21:563–576. 2012.PubMed/NCBI | |
De Keersmaecker K, Marynen P and Cools J: Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica. 90:1116–1127. 2005. | |
Grabher C, von Boehmer H and Look AT: Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer. 6:347–359. 2006. View Article : Google Scholar : PubMed/NCBI | |
South AP, Cho RJ and Aster JC: The double-edged sword of Notch signaling in cancer. Semin Cell Dev Biol. 23:458–464. 2012. View Article : Google Scholar : PubMed/NCBI |