1
|
Cohen HT and McGovern FJ: Renal-cell
carcinoma. N Engl J Med. 353:2477–2490. 2005. View Article : Google Scholar : PubMed/NCBI
|
2
|
Merino MJ, Eccles DM, Linehan WM, et al:
Familial renal cell carcinoma. Pathology and Genetics of Tumors of
the Urinary System and Male Genital Organs. Eble JN, Sauter G,
Epstein J and Sesterhenn IA: IARC Press; Lyon: pp. 15–22. 2004
|
3
|
Maxwell PH, Wiesener MS, Chang GW, et al:
The tumour suppressor protein VHL targets hypoxia-inducible factors
for oxygen-dependent proteolysis. Nature. 399:271–275. 1999.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Kaelin WG Jr and Ratcliffe PJ: Oxygen
sensing by metazoans: the central role of the HIF hydroxylase
pathway. Mol Cell. 30:393–402. 2008. View Article : Google Scholar : PubMed/NCBI
|
5
|
Raval RR, Lau KW, Tran MGB, et al:
Contrasting properties of hypoxia-inducible factor 1 (HIF-1) and
HIF-2 in von Hippel-Lindau-associated renal cell carcinoma. Mol
Cell Biol. 25:5675–5686. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Shen C, Beroukhim R, Schumacher SE, et al:
Genetic and functional studies implicate HIF1α as a 14q kidney
cancer suppressor gene. Cancer Discov. 1:222–235. 2011.PubMed/NCBI
|
7
|
Roe JS and Youn HD: The positive
regulation of p53 by the tumor suppressor VHL. Cell Cycle.
5:2054–2056. 2006. View Article : Google Scholar : PubMed/NCBI
|
8
|
Thoma CR, Frew IJ, Hoerner CR, Montani M,
Moch H and Krek W: pVHL and GSK3β are components of a primary
cilium-maintenance signalling network. Nat Cell Biol. 9:588–595.
2007.
|
9
|
Lolkema MP, Mans DA, Snijckers CM, et al:
The von Hippel-Lindau tumour suppressor interacts with microtubules
through kinesin-2. FEBS Lett. 581:4571–4576. 2007. View Article : Google Scholar : PubMed/NCBI
|
10
|
Roe JS, Kim HR, Hwang IY, Cho EJ and Youn
HD: von Hippel-Lindau protein promotes Skp2 destabilization on DNA
damage. Oncogene. 30:3127–3138. 2011. View Article : Google Scholar : PubMed/NCBI
|
11
|
Young AP and Kaelin WG Jr: Senescence
triggered by the loss of the VHL tumor suppressor. Cell Cycle.
7:1709–1712. 2008. View Article : Google Scholar : PubMed/NCBI
|
12
|
Xu Y, Sun Y, Jiang X, et al: The p400
ATPase regulates nucleosome stability and chromatin ubiquitination
during DNA repair. J Cell Biol. 191:31–43. 2010. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chan HM, Narita M, Lowe SW and Livingston
DM: The p400 E1A-associated protein is a novel component of the p53
--> p21 senescence pathway. Genes Dev. 19:196–201. 2005.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Samuelson AV, Narita M, Chan HM, et al:
p400 is required for E1A to promote apoptosis. J Biol Chem.
280:21915–21923. 2005. View Article : Google Scholar : PubMed/NCBI
|
15
|
Flinterman MB, Mymryk JS, Klanrit P, et
al: p400 function is required for the adenovirus E1A-mediated
suppression of EGFR and tumour cell killing. Oncogene.
26:6863–6874. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
van Diest PJ, van der Wall E and Baak JPA:
Prognostic value of proliferation in invasive breast cancer: a
review. J Clin Pathol. 57:675–681. 2004.PubMed/NCBI
|
17
|
Spyratos F, Ferrero-Poüs M, Trassard M, et
al: Correlation between MIB-1 and other proliferation markers:
clinical implications of the MIB-1 cutoff value. Cancer.
94:2151–2159. 2002. View Article : Google Scholar : PubMed/NCBI
|
18
|
de Riese WT, Crabtree WN, Allhoff EP, et
al: Prognostic significance of Ki-67 immunostaining in
nonmetastatic renal cell carcinoma. J Clin Oncol. 11:1804–1808.
1993.PubMed/NCBI
|
19
|
Aleskandarany MA, Rakha EA, Macmillan RD,
Powe DG, Ellis IO and Green AR: MIB1/Ki-67 labelling index can
classify grade 2 breast cancer into two clinically distinct
subgroups. Breast Cancer Res Treat. 127:591–599. 2011. View Article : Google Scholar : PubMed/NCBI
|
20
|
Rioux-Leclercq N, Turlin B, Bansard J, et
al: Value of immunohistochemical Ki-67 and p53 determinations as
predictive factors of outcome in renal cell carcinoma. Urology.
55:501–505. 2000. View Article : Google Scholar : PubMed/NCBI
|
21
|
Scarpa A, Mantovani W, Capelli P, et al:
Pancreatic endocrine tumors: improved TNM staging and
histopathological grading permit a clinically efficient prognostic
stratification of patients. Mod Pathol. 23:824–833. 2010.
View Article : Google Scholar
|
22
|
Michaloglou C, Vredeveld LCW, Soengas MS,
et al: BRAFE600-associated senescence-like cell cycle arrest of
human naevi. Nature. 436:720–724. 2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Macher-Goeppinger S, Aulmann S, Tagscherer
KE, et al: Prognostic value of tumor necrosis factor-related
apoptosis-inducing ligand (TRAIL) and TRAIL receptors in renal cell
cancer. Clin Cancer Res. 15:650–659. 2009. View Article : Google Scholar : PubMed/NCBI
|
24
|
Dupont Jensen J, Laenkholm AV, Knoop A, et
al: PIK3CA mutations may be discordant between primary and
corresponding metastatic disease in breast cancer. Clin Cancer Res.
17:667–677. 2011.
|
25
|
Linehan WM, Srinivasan R and Schmidt LS:
The genetic basis of kidney cancer: a metabolic disease. Nat Rev
Urol. 7:277–285. 2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Baldewijns MM, van Vlodrop IJH, Vermeulen
PB, Soetekouw PM, van Engeland M and de Bruïne AP: VHL and HIF
signalling in renal cell carcinogenesis. J Pathol. 221:125–138.
2010. View Article : Google Scholar : PubMed/NCBI
|
27
|
Young AP, Schlisio S, Minamishima YA, et
al: VHL loss actuates a HIF-independent senescence programme
mediated by Rb and p400. Nat Cell Biol. 10:361–369. 2008.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Welford SM, Dorie MJ, Li X, Haase VH and
Giaccia AJ: Renal oxygenation suppresses VHL loss-induced
senescence that is caused by increased sensitivity to oxidative
stress. Mol Cell Biol. 30:4595–4603. 2010. View Article : Google Scholar : PubMed/NCBI
|
29
|
Mack FA, Patel JH, Biju MP, Haase VH and
Simon MC: Decreased growth of Vhl−/−
fibrosarcomas is associated with elevated levels of cyclin kinase
inhibitors p21 and p27. Mol Cell Biol. 25:4565–4578.
2005.PubMed/NCBI
|
30
|
Courtois-Cox S, Genther Williams SM,
Reczek EE, et al: A negative feedback signaling network underlies
oncogene-induced senescence. Cancer Cell. 10:459–472. 2006.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Chen Z, Trotman LC, Shaffer D, et al:
Crucial role of p53-dependent cellular senescence in suppression of
Pten-deficient tumorigenesis. Nature. 436:725–730. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Serrano M, Lin AW, McCurrach ME, Beach D
and Lowe SW: Oncogenic ras provokes premature cell senescence
associated with accumulation of p53 and p16INK4a. Cell.
88:593–602. 1997. View Article : Google Scholar : PubMed/NCBI
|
33
|
Kuilman T, Michaloglou C, Mooi WJ and
Peeper DS: The essence of senescence. Genes Dev. 24:2463–2479.
2010. View Article : Google Scholar : PubMed/NCBI
|
34
|
Gurova KV, Hill JE, Razorenova OV,
Chumakov PM and Gudkov AV: p53 pathway in renal cell carcinoma is
repressed by a dominant mechanism. Cancer Res. 64:1951–1958. 2004.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Burrows AE, Smogorzewska A and Elledge SJ:
Polybromo-associated BRG1-associated factor components BRD7 and
BAF180 are critical regulators of p53 required for induction of
replicative senescence. Proc Natl Acad Sci USA. 107:14280–14285.
2010. View Article : Google Scholar : PubMed/NCBI
|
36
|
Varela I, Tarpey P, Raine K, et al: Exome
sequencing identifies frequent mutation of the SWI/SNF complex gene
PBRM1 in renal carcinoma. Nature. 469:539–542. 2011.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Dalgliesh GL, Furge K, Greenman C, et al:
Systematic sequencing of renal carcinoma reveals inactivation of
histone modifying genes. Nature. 463:360–363. 2010. View Article : Google Scholar
|
38
|
Lin HK, Chen Z, Wang G, et al: Skp2
targeting suppresses tumorigenesis by Arf-p53-independent
cellular senescence. Nature. 464:374–379. 2010. View Article : Google Scholar
|
39
|
Nardella C, Clohessy JG, Alimonti A and
Pandolfi PP: Pro-senescence therapy for cancer treatment. Nat Rev
Cancer. 11:503–511. 2011. View
Article : Google Scholar : PubMed/NCBI
|