1
|
Ferlay J, Parkin DM and Steliarova-Foucher
E: Estimates of cancer incidence and mortality in Europe in 2008.
Eur J Cancer. 46:765–781. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
American Cancer Society. Prostate Cancer
Statistics. 2013, http://www.cancer.org.
Accessed: May 20, 2013
|
3
|
American Society of Clinical Oncology
Prostate Cancer Statistics. http://www.cancer.net/prostate.
Accessed: May 20, 2013
|
4
|
Imamoto T, Suzuki H, Akakura K, Komiya A,
Nakamachi H, Ichikawa T, Igarashi T and Ito H: Pretreatment serum
level of testosterone as a prognostic factor in Japanese men with
hormonally treated stage D2 prostate cancer. Endocr J. 48:573–578.
2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen J and Xu X: Diet, epigenetic, and
cancer prevention. Adv Genet. 71:237–255. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Kang NJ, Shin SH, Lee HJ and Lee KW:
Polyphenols as small molecular inhibitors of signaling cascades in
carcinogenesis. Pharmacol Ther. 130:310–324. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Weng CJ and Yen GC: Chemopreventive
effects of dietary phytochemicals against cancer invasion and
metastasis: phenolic acids, monophenol, polyphenol, and their
derivatives. Cancer Treat Rev. 38:76–87. 2012. View Article : Google Scholar
|
8
|
Russo A, Piovano M, Lombardo L, Vanella L,
Cardile V and Garbarino J: Pannarin inhibits cell growth and
induces cell death in human prostate carcinoma DU-145 cells.
Anticancer Drugs. 17:1163–1169. 2006. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yim D, Singh RP, Agarwal C, Lee S, Chi H
and Agarwal R: A novel anticancer agent, decursin, induces G1
arrest and apoptosis in human prostate carcinoma cells. Cancer Res.
65:1035–1044. 2005.PubMed/NCBI
|
10
|
Cardile V, Scifo C, Russo A, Falsaperla M,
Morgia G, Motta M, Renis M, Imbriani E and Silvestre G: Involvement
of HSP70 in resveratrol-induced apoptosis of human prostate cancer.
Anticancer Res. 23:4921–4926. 2003.PubMed/NCBI
|
11
|
Aviram M, Dornfield L, Rosenblat M,
Volkova N, Kaplan M, Coleman R, Hayek T, Presser D and Fuhrman B:
Pomegranate juice consumption reduces oxidative stress, atherogenic
modifications to LDL, and platelet aggregation: studies in humans
and in atherosclerotic apolipoprotein E-deficient mice. Am J Clin
Nutr. 71:1062–1076. 2000.
|
12
|
Kaplan M, Hayek T, Raz A, Coleman R,
Dornfeld L, Vaya J and Aviram M: Pomegranate juice supplementation
to atherosclerotic mice reduces macrophage lipid peroxidation,
cellular cholesterol accumulation and development of
atherosclerosis. J Nutr. 131:2082–2089. 2001.
|
13
|
Kim ND, Mehta R, Yu W, Neeman I, Livney T,
Amichay A, Poirier D, Nicholls P, Kirby A, Jiang W, Mansel R,
Ramachandran C, Rabi T, Kaplan B and Lansky E: Chemopreventive and
adjuvant therapeutic potential of pomegranate (Punica
granatum) for human breast cancer. Breast Cancer Res Treat.
71:203–217. 2002. View Article : Google Scholar : PubMed/NCBI
|
14
|
Cerdá B, Cerón JJ, Tomás-Barberán FA and
Espín JC: Repeated oral administration of high doses of pomegranate
ellagitannin punicalagin to rats for 37 days is not toxic. J Agric
Food Chem. 51:3493–3501. 2003.PubMed/NCBI
|
15
|
Cerdá B, Llorach R, Cerón JJ, Espín JC and
Tomás-Barberán FA: Evaluation of the bioavailability and metabolism
in the rat of punicalagin, an antioxidant polyphenol from
pomegranate juice. Eur J Nutr. 42:18–28. 2003.PubMed/NCBI
|
16
|
Narayanan BA, Geoffrey O, Willingham MC,
Re GG and Nixon DW: p53/p21(WAF1/CIP1) expression and its possible
role in G1 arrest and apoptosis in ellagic acid-treated cancer
cells. Cancer Lett. 136:215–221. 1999. View Article : Google Scholar : PubMed/NCBI
|
17
|
Khanduja KL, Gandhi RK, Pathania V and
Syanl N: Prevention of N-nitrosodiethylamine-induced lung
tumorigenesis by ellagic acid and quercetin in mice. Food Chem
Toxicol. 37:313–318. 1999. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mertens-Talcott SU, Talcott ST and
Percival SS: Low concentrations of quercetin and ellagic acid
synergistically influence proliferation, cytotoxicity and apoptosis
in MOLT-4 human leukemia cells. J Nutr. 133:2669–2674. 2003.
|
19
|
Heber D: Multitargeted therapy of cancer
by ellagitannins. Cancer Lett. 269:262–268. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Seeram NP, Adams LS, Henning SM, Niu Y,
Zhang Y, Nair MG and Heber D: In vitro antiproliferative, apoptotic
and antioxidant activities of punicalagin, ellagic acid and a total
pomegranate tannin extract are enhanced in combination with other
polyphenols as found in pomegranate juice. J Nutr Biochem.
16:360–367. 2005. View Article : Google Scholar
|
21
|
Seeram NP, Aronson WJ, Zhang Y, Henning
SM, Moro A, Lee RP, Sartippour M, Harris DM, Rettig MB, Suchard MA,
Pantuck AJ, Belldegrun A and Heber D: Pomegranate
ellagitannin-derived metabolites inhibit prostate cancer growth and
localize to the mouse prostate gland. J Agric Food Chem.
55:7732–7737. 2007. View Article : Google Scholar
|
22
|
Falsaperla M, Morgia G, Tartarone A,
Ardito R and Romano G: Support ellagic acid therapy in patients
with hormone refractory prostate cancer (HRPC) on standard
chemotherapy using vinorelbine and estramustine phosphate. Eur
Urol. 47:449–455. 2005. View Article : Google Scholar
|
23
|
Lansky EP, Harrison G, Froom P and Jiang
WG: Pomegranate (Punica granatum) pure chemicals show
possible synergistic inhibition of human PC-3 prostate cancer cell
invasion across Matrigel. Invest New Drugs. 23:121–122.
2005.PubMed/NCBI
|
24
|
Sartippour MR, Seeram NP, Rao JY, Moro A,
Harris DM, Henning SM, Firouzi A, Rettig MB, Aronson WJ, Pantuck AJ
and Heber D: Ellagitannin-rich pomegranate extract inhibits
angiogenesis in prostate cancer in vitro and in vivo.
Int J Oncol. 32:475–480. 2008.PubMed/NCBI
|
25
|
Umesalma S and Sudhandiran G: Ellagic acid
prevents rat colon carcinogenesis induced by 1,2 dimethyl hydrazine
through inhibition of AKT-phosphoinositide-3 kinase pathway. Eur J
Pharmacol. 660:249–258. 2011. View Article : Google Scholar : PubMed/NCBI
|
26
|
Vanella L, Barbagallo I, Acquaviva R, Di
Giacomo C, Cardile V, Abraham NG and Sorrenti V: Ellagic acid:
cytodifferentiating and antiproliferative effects in human
prostatic cancer cell lines. Curr Pharm Des. 19:2728–2736. 2013.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Fisher ED: Apoptosis in cancer therapy:
crossing the threshold. Cell. 78:539–542. 1994. View Article : Google Scholar : PubMed/NCBI
|
28
|
Hartwell HL and Kastan MB: Cell cycle
control and cancer. Science. 266:1821–1828. 1994. View Article : Google Scholar : PubMed/NCBI
|
29
|
Thompson CB: Apoptosis in the pathogenesis
and treatment of disease. Science. 267:1456–1462. 1995. View Article : Google Scholar : PubMed/NCBI
|
30
|
Steller H: Mechanisms and genes of
cellular suicide. Science. 267:1445–1449. 1995. View Article : Google Scholar : PubMed/NCBI
|
31
|
Hunter T: Oncoprotein networks. Cell.
88:333–346. 1997. View Article : Google Scholar : PubMed/NCBI
|
32
|
Acquaviva R, Di Giacomo C, Sorrenti V,
Galvano F, Santangelo R, Cardile V, Gangia S, D'Orazio N, Abraham
NG and Vanella L: Antiproliferative effect of oleuropein in
prostate cell lines. Int J Oncol. 41:31–38. 2012.PubMed/NCBI
|
33
|
Bradford MM: A rapid and sensitive method
for the quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Anal Biochem. 72:248–254.
1976. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hong WK and Sporn MB: Recent advances in
chemoprevention of cancer. Science. 278:1073–1077. 1997. View Article : Google Scholar : PubMed/NCBI
|
35
|
Parnes HL, Thompson IM and Ford LG:
Prevention of hormone-related cancers: prostate cancer. J Clin
Oncol. 23:368–377. 2005. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mukhtar H and Ahmad N: Cancer
chemoprevention: future holds in multiple agents. Toxicol Appl
Pharmacol. 158:207–210. 1999. View Article : Google Scholar : PubMed/NCBI
|
37
|
Surh YJ: Cancer chemoprevention with
dietary phytochemicals. Nat Rev Cancer. 3:768–780. 2003. View Article : Google Scholar : PubMed/NCBI
|
38
|
Greenwald P: Lifestyle and medical
approaches to cancer prevention. Recent Results Cancer Res.
166:1–15. 2005. View Article : Google Scholar
|
39
|
Barker N and Clevers H: Catenins, Wnt
signaling and cancer. Bioessays. 22:961–965. 2000. View Article : Google Scholar : PubMed/NCBI
|
40
|
Fearnhead NS, Britton MP and Bodmer WF:
The ABC of APC. Hum Mol Genet. 10:721–733. 2001. View Article : Google Scholar : PubMed/NCBI
|
41
|
Karim R, Tse G, Putti T, Scolyer R and Lee
S: The significance of the Wnt pathway in the pathology of human
cancers. Pathology. 36:120–128. 2004. View Article : Google Scholar : PubMed/NCBI
|
42
|
Gwak J, Lee JH, Chung YH, Song GY and Oh
S: Small molecule-based promotion of PKCα-mediated β-catenin
degradation suppresses the proliferation of CRT-positive cancer
cells. PLoS One. 7:e466972012.PubMed/NCBI
|
43
|
Pratheeshkumar P, Budhraja A, Son YO, Wang
X, Zhang Z, Ding S, Wang L, Hitron A, Lee JC, Xu M, Chen G, Luo J
and Shi X: Quercetin inhibits angiogenesis mediated human prostate
tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K
signaling pathways. PLoS One. 7:e475162012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Diersch S, Wenzel P, Szameitat M, Eser P,
Paul MC, Seidler B, Eser S, Messer M, Reichert M, Pagel P, Esposito
I, Schmid RM, Saur D and Schneider G: Efemp1 and p27Kip1
modulate responsiveness of pancreatic cancer cells towards a dual
PI3K/mTOR inhibitor in preclinical models. Oncotarget. 4:277–288.
2013.
|
45
|
Vinayak S and Carlson RW: mTOR inhibitors
in the treatment of breast cancer. Oncology. 27:38–44.
2013.PubMed/NCBI
|
46
|
Fasolo A and Sessa C: mTOR inhibitors in
the treatment of cancer. Expert Opin Investig Drugs. 17:1717–1734.
2008. View Article : Google Scholar : PubMed/NCBI
|
47
|
Jo MJ, Kim HR and Kim GD: The anticancer
effects of Saccharina japonica on 267B1/K-ras human prostate
cancer cells. Int J Oncol. 41:1789–1797. 2012.
|
48
|
Adhami VM, Syed DN, Khan N and Mukhtar H:
Dietary flavonoid fisetin: a novel dual inhibitor of PI3K/Akt and
mTOR for prostate cancer management. Biochem Pharmacol.
84:1277–1281. 2012. View Article : Google Scholar : PubMed/NCBI
|
49
|
Fagone P, Donia M, Mangano K, Quattrocchi
C, Mammana S, Coco M, Libra M, McCubrey JA and Nicoletti F:
Comparative study of rapamycin and temsirolimus demonstrates
superimposable anti-tumour potency on prostate cancer cells. Basic
Clin Pharmacol Toxicol. 112:63–69. 2013. View Article : Google Scholar : PubMed/NCBI
|
50
|
Sundaresan NR, Pillai VB, Wolfgeher D,
Samant S, Vasudevan P, Parekh V, Raghuraman H, Cunningham JM, Gupta
M and Gupta MP: The deacetylase SIRT1 promotes membrane
localization and activation of Akt and PDK1 during tumorigenesis
and cardiac hypertrophy. Sci Signal. 4:ra462011. View Article : Google Scholar : PubMed/NCBI
|
51
|
Chen HC, Jeng YM, Yuan RH, Hsu HC and Chen
YL: SIRT1 promotes tumorigenesis and resistance to chemotherapy in
hepatocellular carcinoma and its expression predicts poor
prognosis. Ann Surg Oncol. 19:2011–2019. 2012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Jung-Hynes B, Nihal M, Zhong W and Ahmad
N: Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A
target for prostate cancer management via its inhibition? J Biol
Chem. 284:3823–3832. 2009. View Article : Google Scholar : PubMed/NCBI
|
53
|
Abdelmohsen K, Pullmann R Jr, Lal A, Kim
HH, Galban S, Yang X, Blethrow JD, Walker M, Shubert J, Gillespie
DA, Furneaux H and Gorospe M: Phosphorylation of HuR by Chk2
regulates SIRT1 expression. Mol Cell. 25:543–557. 2007. View Article : Google Scholar : PubMed/NCBI
|
54
|
Kuwano Y, Rabinovic A, Srikantan S,
Gorospe M and Demple B: Analysis of nitric oxide-stabilized mRNAs
in human fibroblasts reveals HuR-dependent heme oxygenase 1
upregulation. Mol Cell Biol. 29:2622–2635. 2009. View Article : Google Scholar : PubMed/NCBI
|
55
|
Kruger AL, Peterson S, Turkseven S,
Kaminski PM, Zhang FF, Quan S, Wolin MS and Abraham NG: D-4F
induces heme oxygenase-1 and extracellular superoxide dismutase,
decreases endothelial cell sloughing, and improves vascular
reactivity in rat model of diabetes. Circulation. 111:3126–3134.
2005. View Article : Google Scholar : PubMed/NCBI
|
56
|
Miramar MD, Costantini P, Ravagnan L,
Saraiva LM, Haouzi D, Brothers G, Penninger JM, Peleato ML, Kroemer
G and Susin SA: NADH oxidase activity of mitochondrial
apoptosis-inducing factor. J Biol Chem. 276:16391–16398. 2001.
View Article : Google Scholar : PubMed/NCBI
|
57
|
Klein JA, Longo-Guess CM, Rossmann MP,
Seburn KL, Hurd RE, Frankel WN, Bronson RT and Ackerman SL: The
harlequin mouse mutation downregulates apoptosis-inducing factor.
Nature. 419:367–374. 2002. View Article : Google Scholar : PubMed/NCBI
|
58
|
Otera H, Ohsakaya S, Nagaura Z, Ishihara N
and Mihara K: Export of mitochondrial AIF in response to
proapoptotic stimuli depends on processing at the intermembrane
space. EMBO J. 24:1375–1386. 2005. View Article : Google Scholar : PubMed/NCBI
|
59
|
Susin SA, Lorenzo HK, Zamzami N, Marzo I,
Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler
M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger
JM and Kroemer G: Molecular characterization of mitochondrial
apoptosis-inducing factor. Nature. 397:441–446. 1999. View Article : Google Scholar : PubMed/NCBI
|
60
|
Cregan SP, Fortin A, MacLaurin JG,
Callaghan SM, Cecconi F, Yu SW, Dawson TM, Dawson VL, Park DS,
Kroemer G and Slack RS: Apoptosis-inducing factor is involved in
the regulation of caspase-independent neuronal cell death. J Cell
Biol. 158:507–517. 2002. View Article : Google Scholar : PubMed/NCBI
|
61
|
Ling YH, Liebes L, Zou Y and Perez-Soler
R: Reactive oxygen species generation and mitochondrial dysfunction
in the apoptotic response to Bortezomib, a novel proteasome
inhibitor, in human H460 non-small cell lung cancer cells. J Biol
Chem. 278:33714–33723. 2003. View Article : Google Scholar : PubMed/NCBI
|
62
|
Paradies G, Petrosillo G, Pistolese M and
Ruggiero FM: Reactive oxygen species affect mitochondrial electron
transport complex I activity through oxidative cardiolipin damage.
Gene. 286:135–141. 2002. View Article : Google Scholar
|
63
|
Malik A, Afaq S, Shahid M, Akhtar K and
Assiri A: Influence of ellagic acid on prostate cancer cell
proliferation: a caspase-dependent pathway. Asian Pac J Trop Med.
4:550–555. 2011. View Article : Google Scholar : PubMed/NCBI
|
64
|
Smith PC, Hobisch A, Lin DL, Culig Z and
Keller ET: Interleukin-6 and prostate cancer progression. Cytokine
Growth Factor Rev. 12:33–40. 2001. View Article : Google Scholar : PubMed/NCBI
|
65
|
Cavarretta IT, Neuwirt H, Untergasser G,
Moser PL, Zaki MH, Steiner H, Rumpold H, Fuchs D, Hobisch A, Nemeth
JA and Culig Z: The antiapoptotic effect of IL-6 autocrine loop in
a cellular model of advanced prostate cancer is mediated by Mcl-1.
Oncogene. 26:2822–2832. 2007. View Article : Google Scholar : PubMed/NCBI
|
66
|
Culig Z and Puhr M: Interleukin-6: a
multifunctional targetable cytokine in human prostate cancer. Mol
Cell Endocrinol. 360:52–58. 2012. View Article : Google Scholar : PubMed/NCBI
|
67
|
Yang F, Strand DW and Rowley DR:
Fibroblast growth factor-2 mediates transforming growth factor-β
action in prostate cancer reactive stroma. Oncogene. 27:450–459.
2008.
|