Apoptotic markers in a prostate cancer cell line: Effect of ellagic acid
- Authors:
- Luca Vanella
- Claudia Di Giacomo
- Rosaria Acquaviva
- Ignazio Barbagallo
- Venera Cardile
- Dong Hyun Kim
- Nader G. Abraham
- Valeria Sorrenti
-
Affiliations: Department of Drug Science, Section of Biochemistry, University of Catania, I-95125 Catania, Italy, Department of Bio-Medical Sciences, Section of Physiology, University of Catania, I-95125 Catania, Italy, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA - Published online on: September 30, 2013 https://doi.org/10.3892/or.2013.2757
- Pages: 2804-2810
This article is mentioned in:
Abstract
Ferlay J, Parkin DM and Steliarova-Foucher E: Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 46:765–781. 2010. View Article : Google Scholar : PubMed/NCBI | |
American Cancer Society. Prostate Cancer Statistics. 2013, http://www.cancer.org. Accessed: May 20, 2013 | |
American Society of Clinical Oncology Prostate Cancer Statistics. http://www.cancer.net/prostate. Accessed: May 20, 2013 | |
Imamoto T, Suzuki H, Akakura K, Komiya A, Nakamachi H, Ichikawa T, Igarashi T and Ito H: Pretreatment serum level of testosterone as a prognostic factor in Japanese men with hormonally treated stage D2 prostate cancer. Endocr J. 48:573–578. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chen J and Xu X: Diet, epigenetic, and cancer prevention. Adv Genet. 71:237–255. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kang NJ, Shin SH, Lee HJ and Lee KW: Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis. Pharmacol Ther. 130:310–324. 2011. View Article : Google Scholar : PubMed/NCBI | |
Weng CJ and Yen GC: Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat Rev. 38:76–87. 2012. View Article : Google Scholar | |
Russo A, Piovano M, Lombardo L, Vanella L, Cardile V and Garbarino J: Pannarin inhibits cell growth and induces cell death in human prostate carcinoma DU-145 cells. Anticancer Drugs. 17:1163–1169. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yim D, Singh RP, Agarwal C, Lee S, Chi H and Agarwal R: A novel anticancer agent, decursin, induces G1 arrest and apoptosis in human prostate carcinoma cells. Cancer Res. 65:1035–1044. 2005.PubMed/NCBI | |
Cardile V, Scifo C, Russo A, Falsaperla M, Morgia G, Motta M, Renis M, Imbriani E and Silvestre G: Involvement of HSP70 in resveratrol-induced apoptosis of human prostate cancer. Anticancer Res. 23:4921–4926. 2003.PubMed/NCBI | |
Aviram M, Dornfield L, Rosenblat M, Volkova N, Kaplan M, Coleman R, Hayek T, Presser D and Fuhrman B: Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am J Clin Nutr. 71:1062–1076. 2000. | |
Kaplan M, Hayek T, Raz A, Coleman R, Dornfeld L, Vaya J and Aviram M: Pomegranate juice supplementation to atherosclerotic mice reduces macrophage lipid peroxidation, cellular cholesterol accumulation and development of atherosclerosis. J Nutr. 131:2082–2089. 2001. | |
Kim ND, Mehta R, Yu W, Neeman I, Livney T, Amichay A, Poirier D, Nicholls P, Kirby A, Jiang W, Mansel R, Ramachandran C, Rabi T, Kaplan B and Lansky E: Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer. Breast Cancer Res Treat. 71:203–217. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cerdá B, Cerón JJ, Tomás-Barberán FA and Espín JC: Repeated oral administration of high doses of pomegranate ellagitannin punicalagin to rats for 37 days is not toxic. J Agric Food Chem. 51:3493–3501. 2003.PubMed/NCBI | |
Cerdá B, Llorach R, Cerón JJ, Espín JC and Tomás-Barberán FA: Evaluation of the bioavailability and metabolism in the rat of punicalagin, an antioxidant polyphenol from pomegranate juice. Eur J Nutr. 42:18–28. 2003.PubMed/NCBI | |
Narayanan BA, Geoffrey O, Willingham MC, Re GG and Nixon DW: p53/p21(WAF1/CIP1) expression and its possible role in G1 arrest and apoptosis in ellagic acid-treated cancer cells. Cancer Lett. 136:215–221. 1999. View Article : Google Scholar : PubMed/NCBI | |
Khanduja KL, Gandhi RK, Pathania V and Syanl N: Prevention of N-nitrosodiethylamine-induced lung tumorigenesis by ellagic acid and quercetin in mice. Food Chem Toxicol. 37:313–318. 1999. View Article : Google Scholar : PubMed/NCBI | |
Mertens-Talcott SU, Talcott ST and Percival SS: Low concentrations of quercetin and ellagic acid synergistically influence proliferation, cytotoxicity and apoptosis in MOLT-4 human leukemia cells. J Nutr. 133:2669–2674. 2003. | |
Heber D: Multitargeted therapy of cancer by ellagitannins. Cancer Lett. 269:262–268. 2008. View Article : Google Scholar : PubMed/NCBI | |
Seeram NP, Adams LS, Henning SM, Niu Y, Zhang Y, Nair MG and Heber D: In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem. 16:360–367. 2005. View Article : Google Scholar | |
Seeram NP, Aronson WJ, Zhang Y, Henning SM, Moro A, Lee RP, Sartippour M, Harris DM, Rettig MB, Suchard MA, Pantuck AJ, Belldegrun A and Heber D: Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. J Agric Food Chem. 55:7732–7737. 2007. View Article : Google Scholar | |
Falsaperla M, Morgia G, Tartarone A, Ardito R and Romano G: Support ellagic acid therapy in patients with hormone refractory prostate cancer (HRPC) on standard chemotherapy using vinorelbine and estramustine phosphate. Eur Urol. 47:449–455. 2005. View Article : Google Scholar | |
Lansky EP, Harrison G, Froom P and Jiang WG: Pomegranate (Punica granatum) pure chemicals show possible synergistic inhibition of human PC-3 prostate cancer cell invasion across Matrigel. Invest New Drugs. 23:121–122. 2005.PubMed/NCBI | |
Sartippour MR, Seeram NP, Rao JY, Moro A, Harris DM, Henning SM, Firouzi A, Rettig MB, Aronson WJ, Pantuck AJ and Heber D: Ellagitannin-rich pomegranate extract inhibits angiogenesis in prostate cancer in vitro and in vivo. Int J Oncol. 32:475–480. 2008.PubMed/NCBI | |
Umesalma S and Sudhandiran G: Ellagic acid prevents rat colon carcinogenesis induced by 1,2 dimethyl hydrazine through inhibition of AKT-phosphoinositide-3 kinase pathway. Eur J Pharmacol. 660:249–258. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vanella L, Barbagallo I, Acquaviva R, Di Giacomo C, Cardile V, Abraham NG and Sorrenti V: Ellagic acid: cytodifferentiating and antiproliferative effects in human prostatic cancer cell lines. Curr Pharm Des. 19:2728–2736. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fisher ED: Apoptosis in cancer therapy: crossing the threshold. Cell. 78:539–542. 1994. View Article : Google Scholar : PubMed/NCBI | |
Hartwell HL and Kastan MB: Cell cycle control and cancer. Science. 266:1821–1828. 1994. View Article : Google Scholar : PubMed/NCBI | |
Thompson CB: Apoptosis in the pathogenesis and treatment of disease. Science. 267:1456–1462. 1995. View Article : Google Scholar : PubMed/NCBI | |
Steller H: Mechanisms and genes of cellular suicide. Science. 267:1445–1449. 1995. View Article : Google Scholar : PubMed/NCBI | |
Hunter T: Oncoprotein networks. Cell. 88:333–346. 1997. View Article : Google Scholar : PubMed/NCBI | |
Acquaviva R, Di Giacomo C, Sorrenti V, Galvano F, Santangelo R, Cardile V, Gangia S, D'Orazio N, Abraham NG and Vanella L: Antiproliferative effect of oleuropein in prostate cell lines. Int J Oncol. 41:31–38. 2012.PubMed/NCBI | |
Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72:248–254. 1976. View Article : Google Scholar : PubMed/NCBI | |
Hong WK and Sporn MB: Recent advances in chemoprevention of cancer. Science. 278:1073–1077. 1997. View Article : Google Scholar : PubMed/NCBI | |
Parnes HL, Thompson IM and Ford LG: Prevention of hormone-related cancers: prostate cancer. J Clin Oncol. 23:368–377. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mukhtar H and Ahmad N: Cancer chemoprevention: future holds in multiple agents. Toxicol Appl Pharmacol. 158:207–210. 1999. View Article : Google Scholar : PubMed/NCBI | |
Surh YJ: Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 3:768–780. 2003. View Article : Google Scholar : PubMed/NCBI | |
Greenwald P: Lifestyle and medical approaches to cancer prevention. Recent Results Cancer Res. 166:1–15. 2005. View Article : Google Scholar | |
Barker N and Clevers H: Catenins, Wnt signaling and cancer. Bioessays. 22:961–965. 2000. View Article : Google Scholar : PubMed/NCBI | |
Fearnhead NS, Britton MP and Bodmer WF: The ABC of APC. Hum Mol Genet. 10:721–733. 2001. View Article : Google Scholar : PubMed/NCBI | |
Karim R, Tse G, Putti T, Scolyer R and Lee S: The significance of the Wnt pathway in the pathology of human cancers. Pathology. 36:120–128. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gwak J, Lee JH, Chung YH, Song GY and Oh S: Small molecule-based promotion of PKCα-mediated β-catenin degradation suppresses the proliferation of CRT-positive cancer cells. PLoS One. 7:e466972012.PubMed/NCBI | |
Pratheeshkumar P, Budhraja A, Son YO, Wang X, Zhang Z, Ding S, Wang L, Hitron A, Lee JC, Xu M, Chen G, Luo J and Shi X: Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K signaling pathways. PLoS One. 7:e475162012. View Article : Google Scholar : PubMed/NCBI | |
Diersch S, Wenzel P, Szameitat M, Eser P, Paul MC, Seidler B, Eser S, Messer M, Reichert M, Pagel P, Esposito I, Schmid RM, Saur D and Schneider G: Efemp1 and p27Kip1 modulate responsiveness of pancreatic cancer cells towards a dual PI3K/mTOR inhibitor in preclinical models. Oncotarget. 4:277–288. 2013. | |
Vinayak S and Carlson RW: mTOR inhibitors in the treatment of breast cancer. Oncology. 27:38–44. 2013.PubMed/NCBI | |
Fasolo A and Sessa C: mTOR inhibitors in the treatment of cancer. Expert Opin Investig Drugs. 17:1717–1734. 2008. View Article : Google Scholar : PubMed/NCBI | |
Jo MJ, Kim HR and Kim GD: The anticancer effects of Saccharina japonica on 267B1/K-ras human prostate cancer cells. Int J Oncol. 41:1789–1797. 2012. | |
Adhami VM, Syed DN, Khan N and Mukhtar H: Dietary flavonoid fisetin: a novel dual inhibitor of PI3K/Akt and mTOR for prostate cancer management. Biochem Pharmacol. 84:1277–1281. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fagone P, Donia M, Mangano K, Quattrocchi C, Mammana S, Coco M, Libra M, McCubrey JA and Nicoletti F: Comparative study of rapamycin and temsirolimus demonstrates superimposable anti-tumour potency on prostate cancer cells. Basic Clin Pharmacol Toxicol. 112:63–69. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sundaresan NR, Pillai VB, Wolfgeher D, Samant S, Vasudevan P, Parekh V, Raghuraman H, Cunningham JM, Gupta M and Gupta MP: The deacetylase SIRT1 promotes membrane localization and activation of Akt and PDK1 during tumorigenesis and cardiac hypertrophy. Sci Signal. 4:ra462011. View Article : Google Scholar : PubMed/NCBI | |
Chen HC, Jeng YM, Yuan RH, Hsu HC and Chen YL: SIRT1 promotes tumorigenesis and resistance to chemotherapy in hepatocellular carcinoma and its expression predicts poor prognosis. Ann Surg Oncol. 19:2011–2019. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jung-Hynes B, Nihal M, Zhong W and Ahmad N: Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition? J Biol Chem. 284:3823–3832. 2009. View Article : Google Scholar : PubMed/NCBI | |
Abdelmohsen K, Pullmann R Jr, Lal A, Kim HH, Galban S, Yang X, Blethrow JD, Walker M, Shubert J, Gillespie DA, Furneaux H and Gorospe M: Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell. 25:543–557. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kuwano Y, Rabinovic A, Srikantan S, Gorospe M and Demple B: Analysis of nitric oxide-stabilized mRNAs in human fibroblasts reveals HuR-dependent heme oxygenase 1 upregulation. Mol Cell Biol. 29:2622–2635. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kruger AL, Peterson S, Turkseven S, Kaminski PM, Zhang FF, Quan S, Wolin MS and Abraham NG: D-4F induces heme oxygenase-1 and extracellular superoxide dismutase, decreases endothelial cell sloughing, and improves vascular reactivity in rat model of diabetes. Circulation. 111:3126–3134. 2005. View Article : Google Scholar : PubMed/NCBI | |
Miramar MD, Costantini P, Ravagnan L, Saraiva LM, Haouzi D, Brothers G, Penninger JM, Peleato ML, Kroemer G and Susin SA: NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem. 276:16391–16398. 2001. View Article : Google Scholar : PubMed/NCBI | |
Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT and Ackerman SL: The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature. 419:367–374. 2002. View Article : Google Scholar : PubMed/NCBI | |
Otera H, Ohsakaya S, Nagaura Z, Ishihara N and Mihara K: Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J. 24:1375–1386. 2005. View Article : Google Scholar : PubMed/NCBI | |
Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM and Kroemer G: Molecular characterization of mitochondrial apoptosis-inducing factor. Nature. 397:441–446. 1999. View Article : Google Scholar : PubMed/NCBI | |
Cregan SP, Fortin A, MacLaurin JG, Callaghan SM, Cecconi F, Yu SW, Dawson TM, Dawson VL, Park DS, Kroemer G and Slack RS: Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol. 158:507–517. 2002. View Article : Google Scholar : PubMed/NCBI | |
Ling YH, Liebes L, Zou Y and Perez-Soler R: Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J Biol Chem. 278:33714–33723. 2003. View Article : Google Scholar : PubMed/NCBI | |
Paradies G, Petrosillo G, Pistolese M and Ruggiero FM: Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene. 286:135–141. 2002. View Article : Google Scholar | |
Malik A, Afaq S, Shahid M, Akhtar K and Assiri A: Influence of ellagic acid on prostate cancer cell proliferation: a caspase-dependent pathway. Asian Pac J Trop Med. 4:550–555. 2011. View Article : Google Scholar : PubMed/NCBI | |
Smith PC, Hobisch A, Lin DL, Culig Z and Keller ET: Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev. 12:33–40. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cavarretta IT, Neuwirt H, Untergasser G, Moser PL, Zaki MH, Steiner H, Rumpold H, Fuchs D, Hobisch A, Nemeth JA and Culig Z: The antiapoptotic effect of IL-6 autocrine loop in a cellular model of advanced prostate cancer is mediated by Mcl-1. Oncogene. 26:2822–2832. 2007. View Article : Google Scholar : PubMed/NCBI | |
Culig Z and Puhr M: Interleukin-6: a multifunctional targetable cytokine in human prostate cancer. Mol Cell Endocrinol. 360:52–58. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Strand DW and Rowley DR: Fibroblast growth factor-2 mediates transforming growth factor-β action in prostate cancer reactive stroma. Oncogene. 27:450–459. 2008. |