1
|
Ragin CC, Modugno F and Gollin SM: The
epidemiology and risk factors of head and neck cancer: a focus on
human papillomavirus. J Dent Res. 86:104–114. 2007. View Article : Google Scholar : PubMed/NCBI
|
2
|
Li DW, Gao S, Shen B and Dong P: Effect of
apoptotic and proliferative indices, P-glycoprotein and survivin
expression on prognosis in laryngeal squamous cell carcinoma. Med
Oncol. 28(Suppl 1): S333–S340. 2011. View Article : Google Scholar : PubMed/NCBI
|
3
|
Holgersson G, Ekman S, Reizenstein J, et
al: Molecular profiling using tissue microarrays as a tool to
identify predictive biomarkers in laryngeal cancer treated with
radiotherapy. Cancer Genomics Proteomics. 7:1–7. 2010.PubMed/NCBI
|
4
|
Zou J, Yang H, Chen F, et al: Prognostic
significance of fascin-1 and E-cadherin expression in laryngeal
squamous cell carcinoma. Eur J Cancer Prev. 19:11–17. 2010.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Waha A, Felsberg J, Hartmann W, et al:
Frequent epigenetic inactivation of the chaperone SGNE1/7B2
in human gliomas. Int J Cancer. 131:612–622. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Robertson KD: DNA methylation and human
disease. Nat Rev Genet. 6:597–610. 2005. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wilson IM, Davies JJ, Weber M, et al:
Epigenomics: mapping the methylome. Cell Cycle. 5:155–158. 2006.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Malone CS, Miner MD, Doerr JR, et al:
CmC(A/T)GG DNA methylation in mature B cell lymphoma
gene silencing. Proc Natl Acad Sci USA. 98:10404–10409.
2001.PubMed/NCBI
|
9
|
Esteller M: Cancer epigenetics: DNA
methylation and chromatin alterations in human cancer. Adv Exp Med
Biol. 532:39–49. 2003. View Article : Google Scholar : PubMed/NCBI
|
10
|
Waraya M, Yamashita K, Katoh H, et al:
Cancer specific promoter CpG Islands hypermethylation of HOP
homeobox (HOPX) gene and its potential tumor suppressive role in
pancreatic carcinogenesis. BMC Cancer. 12:3972012. View Article : Google Scholar : PubMed/NCBI
|
11
|
Abildgaard MO, Borre M, Mortensen MM, et
al: Downregulation of zinc finger protein 132 in prostate cancer is
associated with aberrant promoter hypermethylation and poor
prognosis. Int J Cancer. 130:885–895. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Lleras RA, Adrien LR, Smith RV, et al:
Hypermethylation of a cluster of Krüppel-type zinc finger protein
genes on chromosome 19q13 in oropharyngeal squamous cell carcinoma.
Am J Pathol. 178:1965–1974. 2011.
|
13
|
Rosty C, Ueki T, Argani P, et al:
Overexpression of S100A4 in pancreatic ductal
adenocarcinomas is associated with poor differentiation and DNA
hypomethylation. Am J Pathol. 160:45–50. 2002.
|
14
|
Choi JY, James SR, Link PA, et al:
Association between global DNA hypomethylation in leukocytes and
risk of breast cancer. Carcinogenesis. 30:1889–1897. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Liu J, Guo Y, Fu S, Yang M, Sun KL and Fu
WN: Hypomethylation-induced expression of S100A4 increases
the invasiveness of laryngeal squamous cell carcinoma. Oncol Rep.
23:1101–1107. 2010.
|
16
|
Burke E and Barik S: Megaprimer PCR:
application in mutagenesis and gene fusion. Methods Mol Biol.
226:525–532. 2003.PubMed/NCBI
|
17
|
Xie R, Loose DS, Shipley GL, Xie S,
Bassett RL Jr and Broaddus RR: Hypomethylation-induced expression
of S100A4 in endometrial carcinoma. Mod Pathol.
20:1045–1054. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Sato N, Maitra A, Fukushima N, et al:
Frequent hypomethylation of multiple genes overexpressed in
pancreatic ductal adenocarcinoma. Cancer Res. 63:4158–4166.
2003.PubMed/NCBI
|
19
|
Nakamura N and Takenaga K: Hypomethylation
of the metastasis-associated S100A4 gene correlates with
gene activation in human colon adenocarcinoma cell lines. Clin Exp
Metastasis. 16:471–479. 1998. View Article : Google Scholar
|
20
|
Horiuchi A, Hayashi T, Kikuchi N, et al:
Hypoxia upregulates ovarian cancer invasiveness via the binding of
HIF-1α to a hypoxia-induced, methylation-free hypoxia response
element of S100A4 gene. Int J Cancer. 131:1755–1767.
2012.PubMed/NCBI
|
21
|
Mucenski ML, McLain K, Kier AB, et al: A
functional c-myb gene is required for normal murine fetal
hepatic hematopoiesis. Cell. 65:677–689. 1991.
|
22
|
Malaterre J, Carpinelli M, Ernst M, et al:
c-Myb is required for progenitor cell homeostasis in colonic
crypts. Proc Natl Acad Sci USA. 104:3829–3834. 2007. View Article : Google Scholar : PubMed/NCBI
|
23
|
Drabsch Y, Hugo H, Zhang R, et al:
Mechanism of and requirement for estrogen-regulated MYB
expression in estrogen-receptor-positive breast cancer cells. Proc
Natl Acad Sci USA. 104:13762–13767. 2007.PubMed/NCBI
|
24
|
Bender TP, Kremer CS, Kraus M, Buch T and
Rajewsky K: Critical functions for c-Myb at three checkpoints
during thymocyte development. Nat Immunol. 5:721–729. 2004.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Nakagoshi H, Kanei-Ishii C, Sawazaki T,
Mizuguchi G and Ishii S: Transcriptional activation of the
c-myc gene by the c-myb and B-myb gene
products. Oncogene. 7:1233–1240. 1992.
|
26
|
Frampton J, Ramqvist T and Graf T: v-Myb
of E26 leukemia virus up-regulates bcl-2 and suppresses apoptosis
in myeloid cells. Genes Dev. 10:2720–2731. 1996. View Article : Google Scholar : PubMed/NCBI
|
27
|
Taylor D, Badiani P and Weston K: A
dominant interfering Myb mutant causes apoptosis in T cells. Genes
Dev. 10:2732–2744. 1996. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kowenz-Leutz E, Herr P, Niss K and Leutz
A: The homeobox gene GBX2, a target of the myb
oncogene, mediates autocrine growth and monocyte differentiation.
Cell. 91:185–195. 1997.
|
29
|
Wang Q, Williamson M, Bott S, et al:
Hypomethylation of WNT5A, CRIP1 and S100P in prostate cancer.
Oncogene. 26:6560–6565. 2007. View Article : Google Scholar : PubMed/NCBI
|
30
|
Campanero MR, Armstrong MI and Flemington
EK: CpG methylation as a mechanism for the regulation of E2F
activity. Proc Natl Acad Sci USA. 97:6481–6486. 2000. View Article : Google Scholar : PubMed/NCBI
|
31
|
Fang F, Flegler AJ, Du P, Lin S and
Clevenger CV: Expression of cyclophilin B is associated with
malignant progression and regulation of genes implicated in the
pathogenesis of breast cancer. Am J Pathol. 174:297–308. 2009.
View Article : Google Scholar : PubMed/NCBI
|