1
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar
|
2
|
Fleck O and Nielsen O: DNA repair. J Cell
Sci. 117:515–517. 2004. View Article : Google Scholar
|
3
|
Evans AR, Limp-Foster M and Kelley MR:
Going APE over ref-1. Mutat Res. 461:83–108. 2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Wang D, Xiang DB, Yang XQ, et al: APE1
overexpression is associated with cisplatin resistance in non-small
cell lung cancer and targeted inhibition of APE1 enhances the
activity of cisplatin in A549 cells. Lung Cancer. 66:298–304. 2009.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Koukourakis MI, Giatromanolaki A,
Kakolyris S, et al: Nuclear expression of human
apurinic/apyrimidinic endonuclease (HAP1/Ref-1) in head-and-neck
cancer is associated with resistance to chemoradiotherapy and poor
outcome. Int J Radiat Oncol Biol Phys. 50:27–36. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang D, Luo M and Kelley MR: Human
apurinic endonuclease 1 (APE1) expression and prognostic
significance in osteosarcoma: enhanced sensitivity of osteosarcoma
to DNA damaging agents using silencing RNA APE1 expression
inhibition. Mol Cancer Ther. 3:679–686. 2004.
|
7
|
Xiang DB, Chen ZT, Wang D, et al: Chimeric
adenoviral vector Ad5/F35-mediated APE1 siRNA enhances sensitivity
of human colorectal cancer cells to radiotherapy in vitro and in
vivo. Cancer Gene Ther. 15:625–635. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Di Maso V, Avellini C, Crocè LS, et al:
Subcellular localization of APE1/Ref-1 in human hepatocellular
carcinoma: possible prognostic significance. Mol Med. 13:89–96.
2007.PubMed/NCBI
|
9
|
Puglisi F, Barbone F, Tell G, et al:
Prognostic role of Ape/Ref-1 subcellular expression in stage I–III
breast carcinomas. Oncol Rep. 9:11–17. 2002.PubMed/NCBI
|
10
|
Helton ES and Chen X: p53 modulation of
the DNA damage response. J Cell Biochem. 100:883–896. 2007.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Zurer I, Hofseth LJ, Cohen Y, et al: The
role of p53 in base excision repair following genotoxic stress.
Carcinogenesis. 25:11–19. 2004. View Article : Google Scholar : PubMed/NCBI
|
12
|
Strano S, Dell’Orso S, Di Agostino S,
Fontemaggi G, Sacchi A and Blandino G: Mutant p53: an oncogenic
transcription factor. Oncogene. 26:2212–2219. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
McClendon AK, Dean JL, Ertel A, et al: RB
and p53 cooperate to prevent liver tumorigenesis in response to
tissue damage. Gastroenterology. 141:1439–1450. 2011. View Article : Google Scholar : PubMed/NCBI
|
14
|
Itoh T, Shiro T, Seki T, et al:
Relationship between p53 overexpression and the proliferative
activity in hepatocellular carcinoma. Int J Mol Med. 6:137–142.
2000.PubMed/NCBI
|
15
|
Jayaraman L, Murthy KG, Zhu C, Curran T,
Xanthoudakis S and Prives C: Identification of redox/repair protein
Ref-1 as a potent activator of p53. Genes Dev. 11:558–570. 1997.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Hanson S, Kim E and Deppert W: Redox
factor 1 (Ref-1) enhances specific DNA binding of p53 by promoting
p53 tetramerization. Oncogene. 24:1641–1647. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Gohler T, Jager S, Warnecke G, Yasuda H,
Kim E and Deppert W: Mutant p53 proteins bind DNA in a DNA
structure-selective mode. Nucleic Acids Res. 33:1087–1100. 2005.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Gohler T, Reimann M, Cherny D, et al:
Specific interaction of p53 with target binding sites is determined
by DNA conformation and is regulated by the C-terminal domain. J
Biol Chem. 277:41192–41203. 2002. View Article : Google Scholar : PubMed/NCBI
|
19
|
Hainaut P and Milner J: Redox modulation
of p53 conformation and sequence-specific DNA binding in vitro.
Cancer Res. 53:4469–4473. 1993.PubMed/NCBI
|
20
|
Delphin C, Cahen P, Lawrence JJ and
Baudier J: Characterization of baculovirus recombinant wild-type
p53. Dimerization of p53 is required for high-affinity DNA binding
and cysteine oxidation inhibits p53 DNA binding. Eur J Biochem.
223:683–692. 1994. View Article : Google Scholar : PubMed/NCBI
|
21
|
Yang S, Irani K, Heffron SE, Jurnak F and
Meyskens FL Jr: Alterations in the expression of the
apurinic/apyrimidinic endonuclease-1/redox factor-1 (APE/Ref-1) in
human melanoma and identification of the therapeutic potential of
resveratrol as an APE/Ref-1 inhibitor. Mol Cancer Ther.
4:1923–1935. 2005. View Article : Google Scholar : PubMed/NCBI
|
22
|
Robertson KA, Bullock HA, Xu Y, et al:
Altered expression of Ape1/ref-1 in germ cell tumors and
overexpression in NT2 cells confers resistance to bleomycin and
radiation. Cancer Res. 61:2220–2225. 2001.PubMed/NCBI
|
23
|
Bobola MS, Blank A, Berger MS, Stevens BA
and Silber JR: Apurinic/apyrimidinic endonuclease activity is
elevated in human adult gliomas. Clin Cancer Res. 7:3510–3518.
2001.PubMed/NCBI
|
24
|
Moore DH, Michael H, Tritt R, Parsons SH
and Kelley MR: Alterations in the expression of the DNA
repair/redox enzyme APE/ref-1 in epithelial ovarian cancers. Clin
Cancer Res. 6:602–609. 2000.PubMed/NCBI
|
25
|
Wilson DM III, Bennett RA, Marquis JC,
Ansari P and Demple B: Trans-complementation by human apurinic
endonuclease (Ape) of hypersensitivity to DNA damage and
spontaneous mutator phenotype in apn1-yeast. Nucleic Acids Res.
23:5027–5033. 1995. View Article : Google Scholar : PubMed/NCBI
|
26
|
Hansen WK, Deutsch WA, Yacoub A, Xu Y,
Williams DA and Kelley MR: Creation of a fully functional human
chimeric DNA repair protein. Combining O6-methylguanine DNA
methyltransferase (MGMT) and AP endonuclease (APE/redox effector
factor 1 (Ref 1)) DNA repair proteins. J Biol Chem. 273:756–762.
1998. View Article : Google Scholar : PubMed/NCBI
|
27
|
Minisini AM, Di Loreto C, Mansutti M, et
al: Topoisomerase IIalpha and APE/ref-1 are associated with
pathologic response to primary anthracycline-based chemotherapy for
breast cancer. Cancer Lett. 224:133–139. 2005. View Article : Google Scholar : PubMed/NCBI
|
28
|
Puglisi F, Aprile G, Minisini AM, et al:
Prognostic significance of Ape1/ref-1 subcellular localization in
non-small cell lung carcinomas. Anticancer Res. 21:4041–4049.
2001.PubMed/NCBI
|
29
|
Zhang Y, Wang J, Xiang D, Wang D and Xin
X: Alterations in the expression of the apurinic/apyrimidinic
endonuclease-1/redox factor-1 (APE1/Ref-1) in human ovarian cancer
and indentification of the therapeutic potential of APE1/Ref-1
inhibitor. Int J Oncol. 35:1069–1079. 2009.PubMed/NCBI
|
30
|
Muller PA, Vousden KH and Norman JC: p53
and its mutants in tumor cell migration and invasion. J Cell Biol.
192:209–218. 2011. View Article : Google Scholar : PubMed/NCBI
|
31
|
Norbury CJ and Zhivotovsky B: DNA
damage-induced apoptosis. Oncogene. 23:2797–2808. 2004. View Article : Google Scholar
|
32
|
Yu Y, Li CY and Little JB: Abrogation of
p53 function by HPV16 E6 gene delays apoptosis and enhances
mutagenesis but does not alter radiosensitivity in TK6 human
lymphoblast cells. Oncogene. 14:1661–1667. 1997. View Article : Google Scholar : PubMed/NCBI
|
33
|
Gaiddon C, Moorthy NC and Prives C: Ref-1
regulates the transactivation and pro-apoptotic functions of p53 in
vivo. EMBO J. 18:5609–5621. 1999. View Article : Google Scholar : PubMed/NCBI
|
34
|
Couture C, Raybaud-Diogene H, Tetu B, et
al: p53 and Ki-67 as markers of radioresistance in head and neck
carcinoma. Cancer. 94:713–722. 2002. View Article : Google Scholar : PubMed/NCBI
|
35
|
Puisieux A, Ponchel F and Ozturk M: p53 as
a growth suppressor gene in HBV-related hepatocellular carcinoma
cells. Oncogene. 8:487–490. 1993.PubMed/NCBI
|
36
|
Cadwell C and Zambetti GP: The effects of
wild-type p53 tumor suppressor activity and mutant p53
gain-of-function on cell growth. Gene. 277:15–30. 2001. View Article : Google Scholar : PubMed/NCBI
|
37
|
Demple B and Sung JS: Molecular and
biological roles of Ape1 protein in mammalian base excision repair.
DNA Repair. 4:1442–1449. 2005. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kelley MR, Georgiadis MM and Fishel ML:
APE1/Ref-1 role in redox signaling: translational applications of
targeting the redox function of the DNA repair/redox protein
APE1/Ref-1. Curr Mol Pharmacol. 5:36–53. 2012. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tell G, Damante G, Caldwell D and Kelley
MR: The intracellular localization of APE1/Ref-1: more than a
passive phenomenon? Antioxid Redox Signal. 7:367–384. 2005.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Xanthoudakis S, Miao GG and Curran T: The
redox and DNA-repair activities of Ref-1 are encoded by
nonoverlapping domains. Proc Natl Acad Sci USA. 91:23–27. 1994.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Walker LJ, Robson CN, Black E, Gillespie D
and Hickson ID: Identification of residues in the human DNA repair
enzyme HAP1 (Ref-1) that are essential for redox regulation of Jun
DNA binding. Mol Cell Biol. 13:5370–5376. 1993.PubMed/NCBI
|
42
|
Anderson ME, Woelker B, Reed M, Wang P and
Tegtmeyer P: Reciprocal interference between the sequence-specific
core and nonspecific C-terminal DNA binding domains of p53:
implications for regulation. Mol Cell Biol. 17:6255–6264.
1997.PubMed/NCBI
|
43
|
Yakovleva T, Pramanik A, Terenius L,
Ekstrom TJ and Bakalkin G: p53 latency - out of the blind alley.
Trends Biochem Sci. 27:612–618. 2002. View Article : Google Scholar : PubMed/NCBI
|
44
|
Espinosa JM and Emerson BM:
Transcriptional regulation by p53 through intrinsic DNA/chromatin
binding and site-directed cofactor recruitment. Mol Cell. 8:57–69.
2001. View Article : Google Scholar : PubMed/NCBI
|
45
|
McKinney K and Prives C: Efficient
specific DNA binding by p53 requires both its central and
C-terminal domains as revealed by studies with high-mobility group
1 protein. Mol Cell Biol. 22:6797–6808. 2002. View Article : Google Scholar : PubMed/NCBI
|
46
|
Muller BF, Paulsen D and Deppert W:
Specific binding of MAR/SAR DNA-elements by mutant p53. Oncogene.
12:1941–1952. 1996.PubMed/NCBI
|
47
|
Lanyi A, Deb D, Seymour RC, Ludes-Meyers
JH, Subler MA and Deb S: ‘Gain of function’ phenotype of
tumor-derived mutant p53 requires the
oligomerization/nonsequence-specific nucleic acid-binding domain.
Oncogene. 16:3169–3176. 1998.
|
48
|
Frazier MW, He X, Wang J, Gu Z, Cleveland
JL and Zambetti GP: Activation of c-myc gene expression by
tumor-derived p53 mutants requires a discrete C-terminal domain.
Mol Cell Biol. 18:3735–3743. 1998.
|
49
|
Ueno M, Masutani H, Arai RJ, et al:
Thioredoxin-dependent redox regulation of p53-mediated p21
activation. J Biol Chem. 274:35809–35815. 1999. View Article : Google Scholar : PubMed/NCBI
|
50
|
Tan Z, Sankar R, Tu W, et al:
Immunohistochemical study of p53-associated proteins in rat brain
following lithium-pilocarpine status epilepticus. Brain Res.
929:129–138. 2002. View Article : Google Scholar : PubMed/NCBI
|