Upregulation of NEK2 is associated with drug resistance in ovarian cancer
- Authors:
- Xia Liu
- Yutao Gao
- Yi Lu
- Jian Zhang
- Li Li
- Fuqiang Yin
-
Affiliations: Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China, Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Affiliated to Capital Medical University, Chaoyang, Beijing 100020, P.R. China, Medical Scientific Research Centre, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China - Published online on: December 9, 2013 https://doi.org/10.3892/or.2013.2910
- Pages: 745-754
This article is mentioned in:
Abstract
Landis SH, Murray T, Bolden S and Wingo PA: Cancer statistics, 1999. CA Cancer J Clin. 49:8–31. 1999. View Article : Google Scholar | |
Siegel R, Naishadham D and Jemal A: Cancer statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar | |
Vaughan S, Coward JI, Bast RC Jr, Berchuck A, Berek JS, Brenton JD, Coukos G, Crum CC, Drapkin R, Etemadmoghadam D, Friedlander M, Gabra H, Kaye SB, Lord CJ, Lengyel E, Levine DA, McNeish IA, Menon U, Mills GB, Nephew KP, Oza AM, Sood AK, Stronach EA, Walczak H, Bowtell DD and Balkwill FR: Rethinking ovarian cancer: recommendations for improving outcomes. Nat Rev Cancer. 11:719–725. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T and Thun MJ: Cancer statistics, 2008. CA Cancer J Clin. 58:71–96. 2008. View Article : Google Scholar | |
Cannistra SA: Cancer of the ovary. N Engl J Med. 351:2519–2529. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gottesman MM: Mechanisms of cancer drug resistance. Annu Rev Med. 53:615–627. 2002. View Article : Google Scholar : PubMed/NCBI | |
Johnson SW, Ozols RF and Hamilton TC: Mechanisms of drug resistance in ovarian cancer. Cancer. 71(Suppl 2): S644–S649. 1993. View Article : Google Scholar : PubMed/NCBI | |
Sorrentino A, Liu CG, Addario A, Peschle C, Scambia G and Ferlini C: Role of microRNAs in drug-resistant ovarian cancer cells. Gynecol Oncol. 111:478–486. 2008. View Article : Google Scholar : PubMed/NCBI | |
Osborne C, Wilson P and Tripathy D: Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications. Oncologist. 9:361–377. 2004. View Article : Google Scholar : PubMed/NCBI | |
Van Waardenburg RC, Prins J, Meijer C, Uges DR, De Vries EG and Mulder NH: Effects of c-myc oncogene modulation on drug resistance in human small cell lung carcinoma cell lines. Anticancer Res. 16:1963–1970. 1996. | |
Kumari R, Li H, Haudenschild DR, Fierro F, Carlson CS, Overn P, Gupta L, Gupta K, Nolta J, Yik JH and Di Cesare PE: The oncogene LRF is a survival factor in chondrosarcoma and contributes to tumor malignancy and drug resistance. Carcinogenesis. 33:2076–2083. 2012. View Article : Google Scholar : PubMed/NCBI | |
Barre B, Vigneron A, Perkins N, Roninson IB, Gamelin E and Coqueret O: The STAT3 oncogene as a predictive marker of drug resistance. Trends Mol Med. 13:4–11. 2007. | |
Zhao M, Sun J and Zhao Z: Distinct and competitive regulatory patterns of tumor suppressor genes and oncogenes in ovarian cancer. PLoS One. 7:e441752012. View Article : Google Scholar : PubMed/NCBI | |
Ratner ES, Keane FK, Lindner R, Tassi RA, Paranjape T, Glasgow M, Nallur S, Deng Y, Lu L, Steele L, Sand S, Muller RU, Bignotti E, Bellone S, Boeke M, Yao X, Pecorelli S, Ravaggi A, Katsaros D, Zelterman D, Cristea MC, Yu H, Rutherford TJ, Weitzel JN, Neuhausen SL, Schwartz PE, Slack FJ, Santin AD and Weidhaas JB: A KRAS variant is a biomarker of poor outcome, platinum chemotherapy resistance and a potential target for therapy in ovarian cancer. Oncogene. 31:4559–4566. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Wu A and Jiang K: Effect of antisense c-erbB2 on biologic behaviour and chemotherapeutic drug sensitivity in human ovarian cancer cells. Zhonghua Fu Chan Ke Za Zhi. 31:169–172. 1996.(In Chinese). | |
Fu S, Hennessy BT, Ng CS, Ju Z, Coombes KR, Wolf JK, Sood AK, Levenback CF, Coleman RL, Kavanagh JJ, Gershenson DM, Markman M, Dice K, Howard A, Li J, Li Y, Stemke-Hale K, Dyer M, Atkinson E, Jackson E, Kundra V, Kurzrock R, Bast RC Jr and Mills GB: Perifosine plus docetaxel in patients with platinum and taxane resistant or refractory high-grade epithelial ovarian cancer. Gynecol Oncol. 126:47–53. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Choi EJ, Jin C and Kim DH: Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol. 97:26–34. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stronach EA, Alfraidi A, Rama N, Datler C, Studd JB, Agarwal R, Guney TG, Gourley C, Hennessy BT, Mills GB, Mai A, Brown R, Dina R and Gabra H: HDAC4-regulated STAT1 activation mediates platinum resistance in ovarian cancer. Cancer Res. 71:4412–4422. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fry AM, Schultz SJ, Bartek J and Nigg EA: Substrate specificity and cell cycle regulation of the Nek2 protein kinase, a potential human homolog of the mitotic regulator NIMA of Aspergillus nidulans. J Biol Chem. 270:12899–12905. 1995. View Article : Google Scholar : PubMed/NCBI | |
Lee J and Gollahon L: Nek2-targeted ASO or siRNA pretreatment enhances anticancer drug sensitivity in triplenegative breast cancer cells. Int J Oncol. 42:839–847. 2013.PubMed/NCBI | |
Zhou W, Yang Y, Xia J, Wang H, Salama ME, Xiong W, Xu H, Shetty S, Chen T, Zeng Z, Shi L, Zangari M, Miles R, Bearss D, Tricot G and Zhan F: NEK2 induces drug resistance mainly through activation of efflux drug pumps and is associated with poor prognosis in myeloma and other cancers. Cancer Cell. 23:48–62. 2013. View Article : Google Scholar | |
Harrison C: Cancer: a target for drug resistance. Nat Rev Drug Discov. 12:1902013. View Article : Google Scholar | |
Barrett T and Edgar R: Mining microarray data at NCBI’s Gene Expression Omnibus (GEO)*. Methods Mol Biol. 338:175–190. 2006. | |
Mostafavi S, Ray D, Warde-Farley D, Grouios C and Morris Q: GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol. 9(Suppl 1): S42008. View Article : Google Scholar : PubMed/NCBI | |
de Leeuw N, Dijkhuizen T, Hehir-Kwa JY, Carter NP, Feuk L, Firth HV, Kuhn RM, Ledbetter DH, Martin CL, van Ravenswaaij-Arts CM, Scherer SW, Shams S, Van Vooren S, Sijmons R, Swertz M and Hastings R: Diagnostic interpretation of array data using public databases and internet sources. Hum Mutat. Feb 14–2012.(Epub ahead of print). View Article : Google Scholar | |
Dweep H, Sticht C, Pandey P and Gretz N: miRWalk - database: prediction of possible miRNA binding sites by ‘walking’ the genes of three genomes. J Biomed Inform. 44:839–847. 2011. | |
Fry AM, O’Regan L, Sabir SR and Bayliss R: Cell cycle regulation by the NEK family of protein kinases. J Cell Sci. 125:4423–4433. 2012. View Article : Google Scholar : PubMed/NCBI | |
Andersen JS, Wilkinson CJ, Mayor T, Mortensen P, Nigg EA and Mann M: Proteomic characterization of the human centrosome by protein correlation profiling. Nature. 426:570–574. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fry AM, Meraldi P and Nigg EA: A centrosomal function for the human Nek2 protein kinase, a member of the NIMA family of cell cycle regulators. EMBO J. 17:470–481. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hayward DG, Clarke RB, Faragher AJ, Pillai MR, Hagan IM and Fry AM: The centrosomal kinase Nek2 displays elevated levels of protein expression in human breast cancer. Cancer Res. 64:7370–7376. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cappello P, Blaser H, Gorrini C, Lin DC, Elia AJ, Wakeham A, Haider S, Boutros PC, Mason JM, Miller NA, Youngson B, Done SJ and Mak TW: Role of Nek2 on centrosome duplication and aneuploidy in breast cancer cells. Oncogene. May 27–2013.(Epub ahead of print). View Article : Google Scholar | |
Wang S, Li W, Lv S, Wang Y, Liu Z, Zhang J, Liu T and Niu Y: Abnormal expression of Nek2 and β-catenin in breast carcinoma: clinicopathological correlations. Histopathology. 59:631–642. 2011. | |
Wang H, Xie YT, Han JY, Ruan Y, Song AP, Zheng LY, Zhang WZ, Sajdik C, Li Y, Tian XX and Fang WG: Genetic polymorphisms in centrobin and Nek2 are associated with breast cancer susceptibility in a Chinese Han population. Breast Cancer Res Treat. 136:241–251. 2012. | |
Liu Z, Wang Y, Wang S, Zhang J, Zhang F and Niu Y: Nek2C functions as a tumor promoter in human breast tumorigenesis. Int J Mol Med. 30:775–782. 2012.PubMed/NCBI | |
Landi MT, Dracheva T, Rotunno M, Figueroa JD, Liu H, Dasgupta A, Mann FE, Fukuoka J, Hames M, Bergen AW, Murphy SE, Yang P, Pesatori AC, Consonni D, Bertazzi PA, Wacholder S, Shih JH, Caporaso NE and Jen J: Gene expression signature of cigarette smoking and its role in lung adenocarcinoma development and survival. PLoS One. 3:e16512008. View Article : Google Scholar : PubMed/NCBI | |
Koch M and Wiese M: Gene expression signatures of angiocidin and darapladib treatment connect to therapy options in cervical cancer. J Cancer Res Clin Oncol. 139:259–267. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hawkins SM, Loomans HA, Wan YW, Ghosh-Choudhury T, Coffey D, Xiao W, Liu Z, Sangi-Haghpeykar H and Anderson ML: Expression and functional pathway analysis of nuclear receptor NR2F2 in ovarian cancer. J Clin Endocrinol Metab. 98:E1152–E1162. 2013. View Article : Google Scholar : PubMed/NCBI | |
Suzuki K, Kokuryo T, Senga T, Yokoyama Y, Nagino M and Hamaguchi M: Novel combination treatment for colorectal cancer using Nek2 siRNA and cisplatin. Cancer Sci. 101:1163–1169. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gudmundsdottir K and Ashworth A: The roles of BRCA1 and BRCA2 and associated proteins in the maintenance of genomic stability. Oncogene. 25:5864–5874. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Fan Q, Ren K and Andreassen PR: PALB2 functionally connects the breast cancer susceptibility proteins BRCA1 and BRCA2. Mol Cancer Res. 7:1110–1118. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhao D, Zhang W, Li XG, Wang XB, Li M, Li YF, Tian HM, Song PP, Liu J, Chang QY and Wu LY: The mRNA expression of BRCA1, ERCC1, TUBB3, PRR13 genes and their relationship with clinical chemosensitivity in primary epithelial ovarian cancer. Zhonghua Zhong Liu Za Zhi. 34:196–200. 2012.(In Chinese). | |
Lu L, Katsaros D, Wiley A, Rigault de la Longrais IA, Puopolo M and Yu H: Expression of MDR1 in epithelial ovarian cancer and its association with disease progression. Oncol Res. 16:395–403. 2007.PubMed/NCBI | |
Sakai W, Swisher EM, Jacquemont C, Chandramohan KV, Couch FJ, Langdon SP, Wurz K, Higgins J, Villegas E and Taniguchi T: Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res. 69:6381–6386. 2009. | |
Scully R, Chen J, Plug A, Xiao Y, Weaver D, Feunteun J, Ashley T and Livingston DM: Association of BRCA1 with Rad51 in mitotic and meiotic cells. Cell. 88:265–275. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Cao Y, Weng D, Xing H, Song X, Zhou J, Xu G, Lu Y, Wang S and Ma D: Effect of tumor suppressor gene PTEN on the resistance to cisplatin in human ovarian cancer cell lines and related mechanisms. Cancer Lett. 271:260–271. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yan X, Fraser M, Qiu Q and Tsang BK: Over-expression of PTEN sensitizes human ovarian cancer cells to cisplatin-induced apoptosis in a p53-dependent manner. Gynecol Oncol. 102:348–355. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zhang P, Gao W, Li H, Reed E and Chen F: Inducible degradation of checkpoint kinase 2 links to cisplatin-induced resistance in ovarian cancer cells. Biochem Biophys Res Commun. 328:567–572. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Yashiro M, Qiu H, Nishii T, Matsuzaki T and Hirakawa K: Establishment and characterization of multidrug-resistant gastric cancer cell lines. Anticancer Res. 30:915–921. 2010.PubMed/NCBI | |
Yin F, Liu X, Li D, Wang Q, Zhang W and Li L: Tumor suppressor genes associated with drug resistance in ovarian cancer (Review). Oncol Rep. 30:3–10. 2013.PubMed/NCBI | |
He G, Kuang J, Khokhar AR and Siddik ZH: The impact of S- and G2-checkpoint response on the fidelity of G1-arrest by cisplatin and its comparison to a non-cross-resistant platinum(IV) analog. Gynecol Oncol. 122:402–409. 2011. View Article : Google Scholar : PubMed/NCBI | |
Plumb JA, Strathdee G, Sludden J, Kaye SB and Brown R: Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer Res. 60:6039–6044. 2000. | |
Strathdee G, MacKean MJ, Illand M and Brown R: A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene. 18:2335–2341. 1999.PubMed/NCBI | |
Zhang X, Wang X, Song X, Liu C, Shi Y, Wang Y, Afonja O, Ma C, Chen YH and Zhang L: Programmed cell death 4 enhances chemosensitivity of ovarian cancer cells by activating death receptor pathway in vitro and in vivo. Cancer Sci. 101:2163–2170. 2010. View Article : Google Scholar : PubMed/NCBI | |
Reles A, Wen WH, Schmider A, Gee C, Runnebaum IB, Kilian U, Jones LA, El-Naggar A, Minguillon C, Schönborn I, Reich O, Kreienberg R, Lichtenegger W and Press MF: Correlation of p53 mutations with resistance to platinum-based chemotherapy and shortened survival in ovarian cancer. Clin Cancer Res. 7:2984–2997. 2001. | |
Al-Bahlani S, Fraser M, Wong AY, Sayan BS, Bergeron R, Melino G and Tsang BK: P73 regulates cisplatin-induced apoptosis in ovarian cancer cells via a calcium/calpain-dependent mechanism. Oncogene. 30:4219–4230. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu YY, Li L, Li DR, Zhang W and Wang Q: Suppression of WWOX gene by RNA interference reverses platinum resistance acquired in SKOV3/SB cells. Zhonghua Fu Chan Ke Za Zhi. 43:854–858. 2008.(In Chinese). | |
Takai N and Narahara H: Histone deacetylase inhibitor therapy in epithelial ovarian cancer. J Oncol. 2010:4584312010. View Article : Google Scholar : PubMed/NCBI | |
Auner V, Sehouli J, Oskay-Oezcelik G, Horvat R, Speiser P and Zeillinger R: ABC transporter gene expression in benign and malignant ovarian tissue. Gynecol Oncol. 117:198–201. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fink D, Nebel S, Aebi S, Nehme A and Howell S: Loss of DNA mismatch repair due to knockout of MSH2 or PMS2 results in resistance to cisplatin and carboplatin. Int J Oncol. 11:539–542. 1997.PubMed/NCBI | |
Shah MA and Schwartz GK: Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin Cancer Res. 7:2168–2181. 2001.PubMed/NCBI | |
Li M, Balch C, Montgomery JS, Jeong M, Chung JH, Yan P, Huang TH, Kim S and Nephew KP: Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genomics. 2:342009. View Article : Google Scholar : PubMed/NCBI | |
Gregory-Bass RC, Olatinwo M, Xu W, Matthews R, Stiles JK, Thomas K, Liu D, Tsang B and Thompson WE: Prohibitin silencing reverses stabilization of mitochondrial integrity and chemoresistance in ovarian cancer cells by increasing their sensitivity to apoptosis. Int J Cancer. 122:1923–1930. 2008. View Article : Google Scholar : PubMed/NCBI | |
Koshkin V and Krylov SN: Correlation between multi-drug resistance-associated membrane transport in clonal cancer cells and the cell cycle phase. PLoS One. 7:e413682012. View Article : Google Scholar : PubMed/NCBI | |
Fojo T and Menefee M: Mechanisms of multidrug resistance: the potential role of microtubule-stabilizing agents. Ann Oncol. 18(Suppl 5): v3–v8. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kassler S, Donninger H, Birrer MJ and Clark GJ: RASSF1A and the taxol response in ovarian cancer. Mol Biol Int. 2012:2632672012. View Article : Google Scholar : PubMed/NCBI | |
Pellicciotta I, Yang CP, Venditti CA, Goldberg GL and Shahabi S: Response to microtubule-interacting agents in primary epithelial ovarian cancer cells. Cancer Cell Int. 13:332013. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Hu S, Wang J, Cai J, Xiao L, Yu L and Wang Z: MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells. Gynecol Oncol. 119:125–130. 2010. View Article : Google Scholar : PubMed/NCBI | |
Husted S, Søkilde R, Rask L, Cirera S, Busk PK, Eriksen J and Litman T: MicroRNA expression profiles associated with development of drug resistance in Ehrlich ascites tumor cells. Mol Pharm. 8:2055–2062. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vang S, Wu HT, Fischer A, Miller DH, MacLaughlan S, Douglass E, Steinhoff M, Collins C, Smith PJ, Brard L and Brodsky AS: Identification of ovarian cancer metastatic miRNAs. PLoS One. 8:e582262013. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Chuang A, Hao H, Talbot C, Sen T, Trink B, Sidransky D and Ratovitski E: Phospho-ΔNp63α is a key regulator of the cisplatin-induced microRNAome in cancer cells. Cell Death Differ. 18:1220–1230. 2011. | |
Galluzzi L, Morselli E, Vitale I, Kepp O, Senovilla L, Criollo A, Servant N, Paccard C, Hupé P, Robert T, Ripoche H, Lazar V, Harel-Bellan A, Dessen P, Barillot E and Kroemer G: miR-181a and miR-630 regulate cisplatin-induced cancer cell death. Cancer Res. 70:1793–1803. 2010. View Article : Google Scholar : PubMed/NCBI | |
Srivastava N, Manvati S, Srivastava A, Pal R, Kalaiarasan P, Chattopadhyay S, Gochhait S, Dua R and Bamezai RN: miR-24–2 controls H2AFX expression regardless of gene copy number alteration and induces apoptosis by targeting antiapoptotic gene BCL-2: a potential for therapeutic intervention. Breast Cancer Res. 13:R392011. | |
Ji S, Shao G, Lv X, Liu Y, Fan Y, Wu A and Hu H: Downregulation of miRNA-128 sensitises breast cancer cell to chemodrugs by targeting Bax. Cell Biol Int. 37:653–658. 2013. View Article : Google Scholar : PubMed/NCBI | |
Deng M, Tang H, Zhou Y, Zhou M, Xiong W, Zheng Y, Ye Q, Zeng X, Liao Q, Guo X, Li X, Ma J and Li G: miR-216b suppresses tumor growth and invasion by targeting KRAS in nasopharyngeal carcinoma. J Cell Sci. 124:2997–3005. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim SY, Lee YH and Bae YS: MiR-186, miR-216b, miR-337-3p, and miR-760 cooperatively induce cellular senescence by targeting α subunit of protein kinase CKII in human colorectal cancer cells. Biochem Biophys Res Commun. 429:173–179. 2012.PubMed/NCBI | |
Wang J, Tian X, Han R, Zhang X, Wang X, Shen H, Xue L, Liu Y, Yan X, Shen J, Mannoor K, Deepak J, Donahue JM, Stass SA, Xing L and Jiang F: Downregulation of miR-486-5p contributes to tumor progression and metastasis by targeting protumorigenic ARHGAP5 in lung cancer. Oncogene. Mar 11–2013.(Epub ahead of print). View Article : Google Scholar | |
Yin F, Liu X, Li D, Wang Q, Zhang W and Li L: Bioinformatic analysis of chemokine (C-C motif) ligand 21 and SPARC-like protein 1 revealing their associations with drug resistance in ovarian cancer. Int J Oncol. 42:1305–1316. 2013.PubMed/NCBI | |
Jiang X, Gold D and Kolaczyk ED: Network-based auto-probit modeling for protein function prediction. Biometrics. 67:958–966. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sharan R, Ulitsky I and Shamir R: Network-based prediction of protein function. Mol Syst Biol. 3:882007. View Article : Google Scholar : PubMed/NCBI | |
Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM: ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia. 6:1–6. 2004. View Article : Google Scholar : PubMed/NCBI | |
Barrett T and Edgar R: Gene expression Omnibus: microarray data storage, submission, retrieval, and analysis. Methods Enzymol. 411:352–369. 2006. View Article : Google Scholar : PubMed/NCBI | |
Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader GD and Morris Q: The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 38:W214–W220. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jenssen TK, Laegreid A, Komorowski J and Hovig E: A literature network of human genes for high-throughput analysis of gene expression. Nat Genet. 28:21–28. 2001. View Article : Google Scholar : PubMed/NCBI | |
Behm-Ansmant I, Rehwinkel J and Izaurralde E: MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb Symp Quant Biol. 71:523–530. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kloosterman WP and Plasterk RH: The diverse functions of microRNAs in animal development and disease. Dev Cell. 11:441–450. 2006. View Article : Google Scholar : PubMed/NCBI | |
Croce CM and Calin GA: miRNAs, cancer, and stem cell division. Cell. 122:6–7. 2005. View Article : Google Scholar : PubMed/NCBI | |
Yi B, Piazza GA, Su X and Xi Y: MicroRNA and cancer chemoprevention. Cancer Prev Res. 6:401–409. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tili E, Michaille JJ, Gandhi V, Plunkett W, Sampath D and Calin GA: miRNAs and their potential for use against cancer and other diseases. Future Oncol. 3:521–537. 2007. View Article : Google Scholar : PubMed/NCBI | |
Tanaka K, Parvinen M and Nigg EA: The in vivo expression pattern of mouse Nek2, a NIMA-related kinase, indicates a role in both mitosis and meiosis. Exp Cell Res. 237:264–274. 1997. View Article : Google Scholar : PubMed/NCBI |