1
|
Cohen O, Inbal B, Kissil JL, et al:
DAP-kinase participates in TNF-α- and Fas-induced apoptosis and its
function requires the death domain. J Cell Biol. 146:141–148.
1999.
|
2
|
Jang CW, Chen CH, Chen CC, et al: TGF-β
induces apoptosis through Smad-mediated expression of DAP-kinase.
Nat Cell Biol. 4:51–58. 2002.
|
3
|
Bialik S and Kimchi A: The
death-associated protein kinases: structure, function, and beyond.
Annu Rev Biochem. 75:189–210. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Deiss LP, Feinstein E, Berissi H, Cohen O
and Kimchi A: Identification of a novel serine/threonine kinase and
a novel 15-kD protein as potential mediators of the gamma
interferon-induced cell death. Genes Dev. 9:15–30. 1995. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cohen O, Feinstein E and Kimchi A:
DAP-kinase is a Ca2+/calmodulin-dependent,
cytoskeletal-associated protein kinase, with cell death-inducing
functions that depend on its catalytic activity. EMBO J.
16:998–1008. 1997.
|
6
|
Raveh T, Droguett G, Horwitz MS, DePinho
RA and Kimchi A: DAP kinase activates a p19ARF/p53-mediated
apoptotic checkpoint to suppress oncogenic transformation. Nat Cell
Biol. 3:1–7. 2001.PubMed/NCBI
|
7
|
Michie AM, McCaig AM, Nakagawa R and
Vukovic M: Death-associated protein kinase (DAPK) and signal
transduction: regulation in cancer. FEBS J. 277:74–80. 2010.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Sanchez-Cespedes M, Esteller M, Wu L, et
al: Gene promoter hypermethylation in tumors and serum of head and
neck cancer patients. Cancer Res. 60:892–895. 2000.PubMed/NCBI
|
9
|
Kim DH, Nelson HH, Wiencke JK, et al:
Promoter methylation of DAP-kinase: association with advanced stage
in non-small cell lung cancer. Oncogene. 20:1765–1770. 2001.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Dansranjavin T, Möbius C, Tannapfel A, et
al: E-cadherin and DAP kinase in pancreatic adenocarcinoma and
corresponding lymph node metastases. Oncol Rep. 15:1125–1131.
2006.PubMed/NCBI
|
11
|
Kissil JL, Feinstein E, Cohen O, et al:
DAP-kinase loss of expression in various carcinoma and B-cell
lymphoma cell lines: possible implications for role as tumor
suppressor gene. Oncogene. 15:403–407. 1997. View Article : Google Scholar : PubMed/NCBI
|
12
|
Katzenellenbogen RA, Baylin SB and Herman
JG: Hypermethylation of the DAP-kinase CpG island is a common
alteration in B-cell malignancies. Blood. 93:4347–4353.
1999.PubMed/NCBI
|
13
|
Henshall DC, Araki T, Schindler CK, et al:
Expression of death-associated protein kinase and recruitment to
the tumor necrosis factor signaling pathway following brief
seizures. J Neurochem. 86:1260–1270. 2003. View Article : Google Scholar : PubMed/NCBI
|
14
|
Anjum R, Roux PP, Ballif BA, Gygi SP and
Blenis J: The tumor suppressor DAP kinase is a target of
RSK-mediated survival signaling. Curr Biol. 15:1762–1767. 2005.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Chen CH, Wang WJ, Kuo JC, et al:
Bidirectional signals transduced by DAPK-ERK interaction promote
the apoptotic effect of DAPK. EMBO J. 24:294–304. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liambi F, Lourenço FC, Gozuacik D, et al:
The dependence receptor UNC5H2 mediates apoptosis through
DAP-kinase. EMBO J. 24:1192–1201. 2005. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tang X, Khuri FR, Lee JJ, et al:
Hypermethylation of the death-associated protein (DAP) kinase
promoter and aggressiveness in stage I non-small-cell lung cancer.
J Natl Cancer Inst. 92:1511–1516. 2000. View Article : Google Scholar : PubMed/NCBI
|
18
|
Harden SV, Tokumaru Y, Westra WH, et al:
Gene promoter hypermethylation in tumors and lymph nodes of stage I
lung cancer patients. Clin Cancer Res. 9:1370–1375. 2003.PubMed/NCBI
|
19
|
Lu C, Soria JC, Tang X, et al: Prognostic
factors in resected stage I non-small-cell lung cancer: A
multivariate analysis of six molecular markers. J Clin Oncol.
22:4575–4583. 2004. View Article : Google Scholar : PubMed/NCBI
|
20
|
Risau W: Mechanisms of angiogenesis.
Nature. 386:671–674. 1997. View
Article : Google Scholar : PubMed/NCBI
|
21
|
Denny WA: Prodrug strategies in cancer
therapy. Eur J Med Chem. 36:577–595. 2001. View Article : Google Scholar : PubMed/NCBI
|
22
|
Blagosklonny MV: Antiangiogenic therapy
and tumor progression. Cancer Cell. 5:13–17. 2004. View Article : Google Scholar
|
23
|
Olson TA, Mohanraj D, Carson LF and
Ramakrishnan S: Vascular permeability factor gene expression in
normal and neoplastic human ovaries. Cancer Res. 54:276–280.
1994.PubMed/NCBI
|
24
|
Paley PJ, Staskus KA, Gebhard K, et al:
Vascular endothelial growth factor expression in early stage
ovarian carcinoma. Cancer. 80:98–106. 1997. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ohta Y, Tomita Y, Oda M, et al: Tumor
angiogenesis and recurrence in stage I non-small cell lung cancer.
Ann Thorac Surg. 68:1034–1038. 1999. View Article : Google Scholar : PubMed/NCBI
|
26
|
Ishigami SI, Arii S, Furutani M, et al:
Predictive value of vascular endothelial growth factor (VEGF) in
metastasis and prognosis of human colorectal cancer. Br J Cancer.
78:1379–1384. 1998. View Article : Google Scholar : PubMed/NCBI
|
27
|
Yamamoto S, Konishi I, Mandai M, et al:
Expression of vascular endothelial growth factor (VEGF) in
epithelial ovarian neoplasms: correlation with clinicopathology and
patient survival, and analysis of serum VEGF levels. Br J Cancer.
76:1221–1227. 1997. View Article : Google Scholar : PubMed/NCBI
|
28
|
Spannuth WA, Nick AM, Jennings NB, et al:
Functional significance of VEGFR-2 on ovarian cancer cells. Int J
Cancer. 124:1045–1053. 2009. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lee OH, Kim YM, Lee YM, et al: Sphingosine
1-phosphate induces angiogenesis: its angiogenic action and
signaling mechanism in human umbilical vein endothelial cells.
Biochem Biophys Res Commun. 264:743–750. 1999. View Article : Google Scholar : PubMed/NCBI
|
30
|
Byun HJ, Lee JH, Kim BR, et al:
Anti-angiogenic effects of thioridazine involving the FAK-mTOR
pathway. Microvasc Res. 84:227–234. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Senger DR, Ledbetter SR, Claffey KP, et
al: Stimulation of endothelial cell migration by vascular
permeability factor/vascular endothelial growth factor through
cooperative mechanisms involving the alphavbeta3 integrin,
osteopontin, and thrombin. Am J Pathol. 149:293–305. 1996.
|
32
|
Benelli R and Albini A: In vitro models of
angiogenesis: the use of Matrigel. Int J Biol Markers. 14:243–246.
1999.PubMed/NCBI
|
33
|
Fruman DA, Mauvais-Jarvis F, Pollard DA,
et al: Hypoglycaemia, liver necrosis and perinatal death in mice
lacking all isoforms of phosphoinositide 3-kinase p85α. Nat Genet.
26:379–382. 2000.PubMed/NCBI
|
34
|
Lee KB, Byun HJ, Park SH, et al: CYR61
controls p53 and NF-κB expression through PI3K/Akt/mTOR pathways in
carboplatin-induced ovarian cancer cells. Cancer Lett. 315:86–95.
2012.PubMed/NCBI
|
35
|
Rho SB, Kim MJ, Lee JS, et al: Genetic
dissection of protein-protein interactions in multi-tRNA synthetase
complex. Proc Natl Acad Sci USA. 96:4488–4493. 1999. View Article : Google Scholar : PubMed/NCBI
|
36
|
Rho SB, Song YJ, Lim MC, et al: Programmed
cell death 6 (PDCD6) inhibits angiogenesis through PI3K/mTOR/p70S6K
pathway by interacting of VEGFR-2. Cell Signal. 24:131–139. 2012.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Plate KH: Control of tumor growth via
inhibition of tumor angiogenesis. Adv Exp Med Biol. 451:57–61.
1998. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ferrara N: Role of vascular endothelial
growth factor in physiologic and pathologic angiogenesis:
therapeutic implications. Semin Oncol. 29(Suppl 16): S10–S14. 2002.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Mu J, Abe Y, Tsutsui T, et al: Inhibition
of growth and metastasis of ovarian carcinoma by administering a
drug capable of interfering with vascular endothelial growth factor
activity. Jpn J Cancer Res. 87:963–971. 1996. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hartenbach EM, Olson TA, Goswitz JJ, et
al: Vascular endothelial growth factor (VEGF) expression and
survival in human epithelial ovarian carcinomas. Cancer Lett.
121:169–175. 1997. View Article : Google Scholar : PubMed/NCBI
|
41
|
Ferrara N and Davis-Smyth T: The biology
of vascular endothelial growth factor. Endocr Rev. 18:4–25. 1997.
View Article : Google Scholar
|
42
|
Gerber HP, Kowalski J, Sherman D, Eberhard
DA and Ferrara N: Complete inhibition of rhabdomyosarcoma xenograft
growth and neovascularisation requires blockade of both tumor and
host vascular endothelial growth factor. Cancer Res. 60:6253–6258.
2000.
|
43
|
Semenza GL: Hypoxia, clonal selection, and
the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol.
35:71–103. 2000. View Article : Google Scholar : PubMed/NCBI
|
44
|
Zhong H, De Marzo AM, Laughner E, et al:
Overexpression of hypoxia-inducible factor 1α in common human
cancers and their metastases. Cancer Res. 59:5830–5835. 1999.
|
45
|
Maxwell PH, Dachs GU, Gleadle JM, et al:
Hypoxia-inducible factor-1 modulates gene expression in solid
tumors and influences both angiogenesis and tumor growth. Proc Natl
Acad Sci USA. 94:8104–8109. 1997. View Article : Google Scholar : PubMed/NCBI
|
46
|
Forsythe JA, Jiang BH, Iyer NV, et al:
Activation of vascular endothelial growth factor gene transcription
by hypoxia-inducible factor 1. Mol Cell Biol. 16:4604–4613.
1996.PubMed/NCBI
|
47
|
Fang J, Xia C, Cao Z, et al: Apigenin
inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and
HDM2/p53 pathways. FASEB J. 19:342–353. 2005. View Article : Google Scholar : PubMed/NCBI
|
48
|
Altomare DA, Wang HQ, Skele KL, et al: AKT
and mTOR phosphorylation is frequently detected in ovarian cancer
and can be targeted to disrupt ovarian tumor cell growth. Oncogene.
23:5853–5857. 2004. View Article : Google Scholar : PubMed/NCBI
|
49
|
Olsson AK, Dimberg A, Kreuger J and
Caesson-Welsh L: VEGF receptor signaling - in control of vascular
function. Nat Rev Mol Cell Biol. 7:359–371. 2006. View Article : Google Scholar : PubMed/NCBI
|
50
|
Engelman JA: Targeting PI3K signalling in
cancer: opportunities, challenges and limitations. Nat Rev Cancer.
9:550–562. 2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
Hanrahan AJ, Schultz N, Westfal ML, et al:
Genomic complexity and AKT dependence in serous ovarian cancer.
Cancer Discov. 2:56–67. 2012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Guertin DA and Sabatini DM: An expanding
role for mTOR in cancer. Trends Mol Med. 11:353–361. 2005.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Xia C, Meng Q, Cao Z, Shi X and Jiang BH:
Regulation of angiogenesis and tumor growth by p110 alpha and AKT1
via VEGF expression. J Cell Physiol. 209:56–66. 2006. View Article : Google Scholar : PubMed/NCBI
|
54
|
Liby TA, Spyropoulos P, Buff Lindner H, et
al: Akt3 controls vascular endothelial growth factor secretion and
angiogenesis in ovarian cancer cells. Int J Cancer. 130:532–543.
2012. View Article : Google Scholar : PubMed/NCBI
|