PGC-1α integrates glucose metabolism and angiogenesis in multiple myeloma cells by regulating VEGF and GLUT-4

  • Authors:
    • Dedong Cao
    • Hao Zhou
    • Jikai Zhao
    • Lu Jin
    • Wen Yu
    • Han Yan
    • Yu Hu
    • Tao Guo
  • View Affiliations

  • Published online on: January 9, 2014     https://doi.org/10.3892/or.2014.2974
  • Pages: 1205-1210
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Human peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) is a key coactivator in the regulation of gene transcriptional activity in normal tissues. However, it is not clear whether it is involved in the angiogenesis and metabolism of multiple myeloma (MM). The aim of the present study was to investigate the role of PGC-1α in MM. Small interfering RNA (siRNA) was used to inhibit PGC-1α expression in RPMI-8226 cells. An endothelial cell migration assay was performed using transwell chambers and the expression of PGC-1α, estrogen-related receptor-α (ERR‑α), vascular endothelial growth factor (VEGF) and glucose transporter-4 (GLUT-4) was tested by reverse transcription-polymerase chain reaction (RT-PCR). The protein expression of PGC-1α, ERR-α and GLUT-4 was assayed by western blot analysis. Lastly, RPMI-8226 cell proliferation was evaluated using CCK-8 assay. VEGF and GLUT-4 mRNA levels were decreased in cells treated with siRNA targeting PGC-1α, as was the level of GLUT-4 protein. Endothelial cell migration was significantly reduced when these cells were cultured with culture medium from RPMI-8226 cells treated with siPGC-1α. The proliferation rates at 24 and 48 h were suppressed by PGC-1α inhibition. Our results showed that inhibition of PGC-1α suppresses cell proliferation probably by downregulation of VEGF and GLUT-4. The present study suggests that PGC-1α integrates angiogenesis and glucose metabolism in myeloma through regulation of VEGF and GLUT-4.
View Figures
View References

Related Articles

Journal Cover

2014-March
Volume 31 Issue 3

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Cao D, Zhou H, Zhao J, Jin L, Yu W, Yan H, Hu Y and Guo T: PGC-1α integrates glucose metabolism and angiogenesis in multiple myeloma cells by regulating VEGF and GLUT-4. Oncol Rep 31: 1205-1210, 2014
APA
Cao, D., Zhou, H., Zhao, J., Jin, L., Yu, W., Yan, H. ... Guo, T. (2014). PGC-1α integrates glucose metabolism and angiogenesis in multiple myeloma cells by regulating VEGF and GLUT-4. Oncology Reports, 31, 1205-1210. https://doi.org/10.3892/or.2014.2974
MLA
Cao, D., Zhou, H., Zhao, J., Jin, L., Yu, W., Yan, H., Hu, Y., Guo, T."PGC-1α integrates glucose metabolism and angiogenesis in multiple myeloma cells by regulating VEGF and GLUT-4". Oncology Reports 31.3 (2014): 1205-1210.
Chicago
Cao, D., Zhou, H., Zhao, J., Jin, L., Yu, W., Yan, H., Hu, Y., Guo, T."PGC-1α integrates glucose metabolism and angiogenesis in multiple myeloma cells by regulating VEGF and GLUT-4". Oncology Reports 31, no. 3 (2014): 1205-1210. https://doi.org/10.3892/or.2014.2974